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Abstract*

Identifying objects in fluorescence microscopy is a non-trivial task burdened by parameter-
sensitive algorithms. With experiments spanning multiple channels, datasets, opera-
tors, and microscopes, there is a clear need for an approach that adapts dynamically to
changing imaging conditions. We introduce an adaptive object detection method that,
given a microscopy image and an image level label, uses a kurtosis based matching of
the distribution of the image differential to express operator intent in terms of recall
or precision. Examples of image level labels include genome-based alteration of sub-
diffraction limited cellular structures or pathological diagnosis based on image-based
analysis of tissue section, where we wish to capture those aspects of the image that
support the label, and to what extent. We show how a theoretical upper bound of
the statistical distance in feature space enables application of belief theory to obtain
statistical support for each detected object. We validate our method on 2 datasets:
identifying Caveolin-1 labelled caveolae and scaffolds acquired by STED superreso-
lution microscopy, and detecting amyloid-β deposits in confocal microscopy retinal
cross sections of neuropathologically confirmed Alzheimer’s disease donor tissue. Our
results show consistency with biological ground truth and with previous subcellular
object classification results, yet adds insight into more nuanced object transition dy-
namics. We illustrate the novel application of belief theory to object detection in
heterogeneous microscopy datasets and the quantification of conflict of evidence in a
joint belief function. By applying our method successfully to confocal and superreso-
lution microscopy, we demonstrate multi-scale applicability.
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Identifying fluorescent labelled protein structures in multiscale
microscopy
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Distinguishing Cav1 protein structures in superresolution microscopy
images of prostate cancer cells to discover how cell motility enables
metastasis. [6]. The (de-)construction of Caveolae into Scaffolds and
vice versa can give a cell membrane a capability to withstand stress
associated with cell motility, and consequently cancer cell metastasis.
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Retina tissue from Alzheimer diagnosed patients labelled for amyloid-
β [5] (AB). AB is sufficient, but not necessary for Alzheimer disease
(AD). Quantifying the expression of AB deposits specific to AD is criti-
cal to gain insight into this aspect of AD. We identify AB deposits spe-
cific to Alzheimer versus deposits characteristic of healthy tissue.
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Method Overview

A simplified model of Caveolae formation (A). By contrasting 3 genotypes (B) we can learn a complex belief function distinguishing Caveolae,
Scaffolds and background labelling (A.1). The control flow of SPECHT (C) results in a belief [3, 2] function for each object (C.3). An illustration
of SPECHT applied to a prostate cancer cell.
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Does it work?

Regression of belief function to colocalization of PTRF is consistent with ground truth
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Caveolae require PTRF, and have a reported frequency of 20% [4]. We observe that the 20% frequency coincides
with an elbow of the [c,p]df functions of our probability label. This threshold coincides with a marked increase of
PTRF colocalization, confirming the validity of the approach.
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What if images come from different datasets or microscopes ?
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Identifying objects across heterogeneous data

B. Raw image of AD+ retina tissue C. Object annotation using data from microscope X
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Restricting analysis to homogeneous data reduces statistical power in an already reduced sample size context (human tissue). Belief theory
enables us to formulate a joint model (E), while recording the conflict (A, E-o) for the end user to frame any subsequent discovery.
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