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Abstract. Diffuse optical tomography (DOT) leverages near-infrared
light propagation through in vivo tissue to assess its optical properties
and identify abnormalities such as cancerous lesions. While this rela-
tively new optical imaging modality is cost-effective and non-invasive,
its inverse problem (i.e., recovering an image from raw signal measure-
ments) is ill-posed, due to the highly diffusive nature of light propagation
in biological tissues and limited boundary measurements. Solving the in-
verse problem becomes even more challenging in the case of limited-angle
data acquisition given the restricted number of sources and sensors, the
sparsity of the recovered information, and the presence of noise, represen-
tative of real world acquisition environments. Traditional optimization-
based reconstruction methods are computationally intensive and thus
too slow for real-time imaging applications. We propose a novel image
reconstruction method for breast cancer DOT imaging. Our method is
highlighted by two components: (i) a deep learning network with a novel
hybrid loss, and (ii) a distribution transfer learning module. Our model is
designed to focus on lesion specific information and small reconstruction
details to reduce reconstruction loss and lesion localization errors. The
transfer learning module alleviates the need for real training data by tak-
ing advantage of cross-domain learning. Both quantitative and qualita-
tive results demonstrate that the proposed method’s accuracy surpasses
existing methods’ in detecting tissue abnormalities.

Keywords: Diffuse optical tomography · Inverse problem · Recon-
struction · Deep learning · Hybrid loss · Transfer learning · Fuzzy
Jaccard.

1 Introduction

Diffuse optical tomography has witnessed increased interest as an imaging modal-
ity and has recently demonstrated its clinical potential in probing tumors [1, 2]
for being an affordable, non-ionising alternative to X-ray mammography, the pri-
mary screening technique for breast cancer detection. Using near-infrared light
in the spectral range of 600 to 950 nm, DOT enables measuring the distribution
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of the tissue’s optical absorption and scattering parameters that can be used to
quantitatively assess tissue malignancy. The main challenge then remains how
to accurately recover these parameters given the ill-posedness of the DOT image
reconstruction problem and the absence of exact analytic inverse.

Most image reconstruction methods are analytic and iterative approaches
that often suffer from high computational complexity and are complicated by fac-
tors such as imaging geometry, source calibrations and sensor non-idealities [4].
While many deep learning based image reconstruction approaches were proposed
recently [5] and showed increased reconstruction speed, resolution enhancement
and artifact removal for a variety of imaging modalities, most methods focus
on CT and MR image reconstruction [5–7] and only a few tackle ultrasound,
photo-acoustic, multiple scattering, and DOT inverse problems [8–11].

Most DOT inverse problems consider a circular shape scanner with 16 or
more point sources uniformly distributed along the field of view boundary to
maximize the number of measurements thereby improving spatial resolution,
especially in strongly scattering media. Most recently, a multi-layer perceptron
network (MLP) was used to solve DOT image reconstruction problem using high
source count [11]. However, increasing the number of sources and detectors adds
complexity to the DOT scanner hardware and increases manufacturing cost and
computational resources.

One common limitation of existing reconstruction methods is that they per-
form poorly on data with a very low number of point sources (limited projection
data), limited-angle acquisition (e.g, acquisition from one view), or both [1].

Sun et al. [12, 13] address the multiple scattering problem of microwaves in
biological samples. They study the effect of decreasing the number of sources,
to a limited extent (to a minimum of 20 sources), on deep learning based recon-
struction methods for weak and strong scattering scenarios. While their proposed
reconstruction model leverages the rich data representation collected from 20 up
to 40 point sources, it relies on a computationally expensive analytic reconstruc-
tion step to provide a first estimate of the reconstructed image, prohibiting real
time inference. Furthermore, their deep model is not optimized in an end-to-end
manner.

Limited-angle and limited sources DOT image reconstruction in a strong
scattering medium is a challenging task that has been considered in end-to-end
fashion for a functional hand-held probe in a clinical trial by Ben Yedder et
al. [14]. Yet, their results still suffer from noisy reconstruction and deviation of
the reconstruction lesion compared to the ground truth location.

To address the aforementioned limitations, in this paper, we propose a deep
learning DOT reconstruction method based on a novel loss function and transfer
learning to solve the limited-angle and limited sources DOT image reconstruction
problem in a strong scattering medium.

By adaptively focusing on important features and filtering irrelevant and
noisy ones using the Fuzzy Jaccard loss, our network is able to reduce false
positive reconstructed pixels and as a result reconstruct more accurate images.
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Training machine learning based methods requires a high number of training
samples, a challenging requirement in a medical setting, especially with relatively
new imaging devices like DOT probes. Synthetic data simulators can provide an
alternative source of training data. However, creating a realistic synthetic dataset
is a challenging task as it requires careful modelling of the complex interplay
of factors influencing real world acquisition environment. A potential remedy
is to attempt to bridge the gap between real word acquisition and synthetic
data simulation via transfer learning. To the best of our knowledge, this is the
first work to employ a Jaccard based loss and transfer learning to the DOT
reconstruction problem.

2 Methodology

2.1 Background

Given a set of raw acquired DOT measurements y ∈ RS×D from S sources with
D sensors, our objective is to reconstruct an image x ∈ RW×H , which represents
the tissue’s optical coefficients. This problem is commonly formulated as finding
a reconstructed image x̂∗ that minimizes the reconstruction error between the
sensor-domain sampled data y and the forward projection F(·) from a possible
reconstructed image x̂:

x̂∗ = argmin
x̂

∥F(x̂)− y∥+ λR(x̂) (1)

where F(·) is a known predefined forward projection that converts x̂ to the sen-
sor domain, R(·) is a regularization term encoding the prior information about
the data, and λ is a hyper-parameter that controls the contribution of the regu-
larization term. This objective function is traditionally minimized in an iterative
manner until convergence. Alternatively we can learn the task of reconstructing
the image from sensor-domain data by way of a deep neural network with a
significant one-time, off-line training cost that is offset by a fast inference time.

2.2 Deep Learning Reconstruction

Given pairs of measurement vectors y and their corresponding ground truth
image x, our goal is to optimize the parameters θ of a fully convolutional neural
network in an end-to-end manner to learn the mapping between the measurement
vector y and its reconstructed tomographic image x, which recovers the optical
parameters of underlying imaged tissue. Therefore, we seek the inverse function
F−1(·) that solves:

θ∗ = argmin
θ

L
(
F−1(y, θ), x

)
+ λR(F−1(y, θ)) (2)

where L is the loss function of the network that, broadly, penalizes the dissim-
ilarity between the estimated reconstruction and the ground truth. We use an
L2 regularization term (R).
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Fig. 1. The overall architecture of the proposed model. (lower left) The probe (in
black) is positioned to image a phantom (white) with an embedded synthetic lesion
(red arrow). The transfer learning (multilayer perceptron) network maps phantom
measurements yp to the domain of in silico training measurements ys. The mapped
measurements are passed through the reconstruction network to produce the recon-
structed image x̂∗ (rightmost image).

Deep Network The proposed architecture, which extends Yedder et al.’s [14]
FCNN architecture with a transfer learning and novel loss components, is a
decoder-like network that consists of a fully connected layer followed by a set
of residual layers. The fully connected layer maps the measurement vector to a
two-dimensional array and provides a coarse image estimate, while the subse-
quent residual blocks refine the image estimate by passing it through a set of
nonlinear transformations to produce the final reconstruction image. The archi-
tecture of our proposed model is shown in Fig. 1, where each residual block uses
convolutions with batch normalization and ReLU.

Novel Loss Function To address DOT image reconstruction from a limited
information representation (one view with few sources), we propose a novel loss
function, L, that dynamically combines two loss terms:

L = LMSE + β(epoch)LFJ (3)

where LMSE is the mean squared error (MSE) loss, which focuses on pixel-
wise similarity. LFJ is similarity coefficient based fuzzy Jaccard term designed
to promote lesion location and appearance similarity while penalizing artifacts.
β is a hyper-parameter balancing the two terms and varies with the training
epochs to capture the dynamics of this interaction. In particular, β(epoch +
∆) = β0 + γβ(epoch) with γ > 0, which allows the network to learn to first
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reconstruct, via LMSE, an image estimate that is relatively close to the ground
truth image pixel wise distribution and then, via LFJ, gradually refine that
candidate image. In DOT image reconstruction of a breast tissue with zero or
more isolated lesions, the majority of the pixels are background, LFJ is chosen to
address this imbalance. Further, LFJ does not require binary values and accounts
for the similarity between the foreground as well as the background pixel values.
Finally, a log transform of LFJ ensures a steep convex gradient,

LFJ = −log

(∑n
i=1 min(ai, a

′
i)∑n

i=1 max(ai, a′i)
+ ϵ

)
(4)

where the min(·, ·) and max(·, ·) functions compute a probabilistic intersection
and union, respectively while setting ϵ= 10−5 avoids log (0) domain errors.

Transfer Learning Network As training on real world data is limited by
availability of samples, we resort to generating artificial training data via a sim-
ulator. A transfer learning network, implemented as a multilayer perceptron,
tackles the domain shift between the real data measurement yp, as collected
from the probe and used during inference, and the in silico data measurement
ys used during training time (Fig. 1-upper left). By minimizing a loss LTL, the
transfer learning network learns to translate the real world data distribution
onto the in silico data distribution while avoiding overfitting on the in silico
model. Finally, by retraining or fine-tuning this transfer learning network only,
our proposed approach can be generalized to new DOT sensors and or source
configurations.

Given the i-th phantom xp
i we simulate its xs

i tissue equivalent and derive
the corresponding sensor measurements ysi , while we collect ypi using a physical
probe. By minimizing LTL over Np phantom experiments, the transfer learning
module learns the mapping ϕ(ypi ) ≈ ysi to ensure it is in the same domain as ys,

θ∗ = argmin
θ

LTL(θ) where LTL(θ) =

Np∑
i=1

||ϕ(ypi ; θ)− ysi || (5)

where a final test reconstructed image is computed as, x̂i
∗ = F−1(ϕ(ypi )).

3 Experiments and Results

We compare our proposed approach to the state of the art FCNN architecture for
limited angle data [14] and the aforementioned MLP approach [11], as well as the
analytic reconstruction approach described by Shokoufi et al. [15]. In addition,
we evaluate the individual contributions of the terms of our loss function and
the transfer learning.
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3.1 Dataset

To train our network F−1(·) we use in silico training data pairs (xs, ys). It in-
cludes images xs of optical tissue properties, discretized into finite-element nodes,
and their corresponding forward projection measurements ys from the Toast++
software suite [17] using realistic human breast tissue and lesion optical parame-
ters distribution values [16]. Simulated lesions have varying sizes, locations, and
optical coefficients. The forward model mimics the functional hand-held probe
sources and detectors geometries [1]. It comprises 2 LED light sources that illu-
minate the tissue symmetrically and surrounds 128 detectors where both LED
and all detectors are co-linear. The output of the forward model is a 1 × 256
vector ys. A total of 21,590 samples data pairs are used.

The test-set is based on a tissue-equivalent solution where an intralipid so-
lution is used to mimic background breast tissue due to its similarity in optical
properties to breast tissue. A tube with 4 mm cross-sectional diameter was filled
with an Indian-ink tumor-like liquid and was placed at different locations inside
the solution container/solid phantom to mimics cancerous lesions. All phantom
measurements yp are collected with the DOB-probe.

3.2 Implementation

The model was implemented in the Keras framework and trained for a total of
1,000 epochs on an Nvidia Titan X GPU using the Adam optimizer. By optimiz-
ing the model’s performance on the validation set, we set all hyper-parameters
as follows: Batch size to 64; learning rate to 0.001; AMS Grad optimizer set to
true; and (∆ = 10, β0 = 0.2, γ = 0.002), which describe the update equation of
the hyper-parameter β in (3); We use a 80/10/10 training/validation/test split
of the in silico data.

3.3 Qualitative Results

Our model is trained on the in silico data and tested on the phantom dataset.
In Fig. 2, we visually compare our proposed reconstruction method to the com-
peting methods’ results on sample phantom cases. As mentioned earlier, the
transfer learning module maps the real world distribution onto the learned in
silico distribution. Without such mapping, unsurprisingly, we notice artifacts
in the reconstructed image; note the extensive scattering of false positives with
different scales and locations (Fig. 2 - FCNN (MSE)). Adopting transfer learn-
ing clearly reduces these artifacts (Fig. 2 - FCNN (MSE+TL)). Further, observe
how incorporating both the new loss term LFJ and transfer learning module sig-
nificantly reduces the artifacts and improves lesion localization, which otherwise
could compromise diagnosis (Fig. 2 - FCNN (MSE+TL+FJ)).

While MLP showed good performance in the complete information case,
namely a circular shape scanner with 16+ uniformly distributed point sources [11],
it underperforms on the limited angle experiments (Fig. 2 - MLP). We hypoth-
esize that this difference in performance is due to the convolution operators’
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Fig. 2. Qualitative reconstruction performance of our model compared to state of the
art techniques on phantom samples with known lesion ground truth locations. The
parabolic shape of the reconstruction produced by the analytical approach is due to
the algorithm used.

ability to extract comprehensive contextual information and synthesize more
complex robust features.

3.4 Quantitative Results

We measure the reconstruction quality via: (i) Lesion localization error, i.e. the
distance between the centre of the lesions in the ground truth image versus
the reconstructed image; (ii) peak signal to noise ratio (PSNR); (iii) structural
similarity index (SSIM); and (iv) the Fuzzy Jaccard [18]. All reconstructed im-
ages were first normalized prior to calculating the performance metrics. Table 1
presents the results on the phantom dataset.

Table 1. Quantitative results on 32 phantom experiments.

Loc. Error
(pixel)

PSNR
(db)

SSIM Fuzzy
Jaccard

Time
(ms)

Analytic approach [1] 77.4 ± 32.2 15.0 ± 6.0 0.32 ± 0.26 0.17 ± 0.15 83.3
MLP [11] 42.0 ± 17.3 12.5 ± 1.5 0.05 ± 0.03 0.07 ± 0.05 1.2
FCNN (MSE) [14] 33.2 ± 23.4 20.1 ± 4.6 0.46 ± 0.28 0.32 ± 0.06 7.3
FCNN (MSE+TL) 16.6 ± 6.60 20.6 ± 0.4 0.61 ± 0.17 0.45 ± 0.08 11.5
Proposed 14.8 ± 7.40 21.7 ± 0.9 0.73 ± 0.03 0.64 ± 0.10 16.9

Using the transfer learning ϕ(·) module, we observe ∼10% improvement in
Fuzzy Jaccard and ∼16% in SSIM compared to state of the art FCNN with
MSE only. Adding the new LFJ loss term boosts the improvement in these two
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metrics further to ∼34% and ∼33%, respectively. The lesion localization error is
also considerably reduced when using transfer learning and LFJ .

4 Conclusion

We proposed novel extensions to deep learning based diffuse optical tomogra-
phy image reconstruction. We have shown empirically that our model, trained
with the novel hybrid loss function, attains superior quantitative results on mul-
tiple evaluation metrics and, qualitatively, improves the reconstructed images,
showing fewer artifacts that could compromise clinical diagnosis. The transfer
learning module renders an in silico trained network applicable to real world
data. More importantly our approach is decoupled from a change in real world
measurements and can be generalized to new source configurations. Our next
phase in this research is to improve further the lesion localization and validate
our approach on real patient data to assess its diagnostic accuracy.

Acknowledgments We thank NVIDIA Corporation for the donation of Ti-
tan X GPUs used in this research, Compute Canada for HPC resources, Michael
Smith Foundation, BC Cancer Agency, and the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) and NSERC-CREATE-Bioinformatics
for partial funding. The authors also thank Dr. Ramani Ramaseshan from the
BC Cancer Agency for his suggestions.

References

1. Shokoufi, M. and Golnaraghi, F.: Handheld diffuse optical breast scanner probe
for cross-sectional imaging of breast tissue. Journal of Innovative Optical Health
Sciences Vol. 12, No. 02, 1950008, (2019)

2. Flexman, M. L., Kim, H. K., Stoll, et al.: A wireless handheld probe with spec-
trally constrained evolution strategies for diffuse optical imaging of tissue. Review
of Scientific Instruments 83(3), pp. 033108,(2012).

3. Jin, K. H., McCann, M. T., Froustey, E., and Unser, M.: Deep convolutional neural
network for inverse problems in imaging. IEEE Transactions on Image Processing,
26(9), pp. 4509-4522 (2017).

4. Wang, G.:A perspective on deep imaging. IEEE Access, 4, pp. 8914-8924 ( 2016).
5. Wang, G., Ye, J. C., Mueller, et al.: Image reconstruction is a new frontier of machine

learning. IEEE transactions on medical imaging, 37(6), pp.1289-1296 (2018).
6. Gupta, H., Jin, K.H., Nguyen, et al.: CNN-based projected gradient descent for

consistent CT image reconstruction. IEEE transactions on medical imaging, 37(6),
pp.1440-1453, (2018).

7. Würfl, T., Hoffmann, M., Christlein, V., et al.: Deep learning computed tomography:
learning projection-domain weights from image domain in limited angle problems.
IEEE transactions on medical imaging, 37(6), pp.1454-1463,(2018).

8. Wu, S., Gao, Z., Liu, Z., et al.: Direct reconstruction of ultrasound elastography
using an end-to-end deep neural network. In Int. Conf. on Medical Image Computing
and Computer-Assisted Intervention (pp. 374-382),(2018).



Limited-Angle DOT Image Reconstruction using Deep Learning 9

9. Yoon, Y.H., Khan, S., Huh, J. and Ye, J.C.: Efficient b-mode ultrasound image
reconstruction from sub-sampled data using deep learning. IEEE transactions on
medical imaging, 38(2), pp.325-336,(2019).

10. Cai, C., Deng, K., Ma, C. and Luo, J.: End-to-end deep neural network for optical
inversion in quantitative photoacoustic imaging. Optics letters, 43(12), pp.2752-
2755, (2018).

11. Feng, J., Sun, Q., Li, Z., Sun, Z. and Jia, K.: Back-propagation neural network-
based reconstruction algorithm for diffuse optical tomography. J. biomedical optics,
24(5), pp.051407, (2018).

12. Sun, Y., Xia, Z. and Kamilov, U.S.: Efficient and accurate inversion of multiple
scattering with deep learning. Optics express, 26(11), pp.14678-14688, (2018).

13. Sun, Y. and Kamilov, U.S.: Stability of Scattering Decoder For Nonlinear Diffrac-
tive Imaging. arXiv preprint arXiv:1808015, (2018).

14. Ben Yedder, H., BenTaieb, A., Shokoufi, M., et al.: Deep Learning based Im-
age Reconstruction for Diffuse Optical Tomography, In Int. Workshop on Machine
Learning for Medical Image Reconstruction, vol. 11074, pp. 112-119,(2018).

15. Shokoufi, M. : Multi-Modality Breast Cancer Assessment Tools Using Diffuse Op-
tical and Electrical Impedance Spectroscopy. PhD thesis (2016).

16. Ghosh, N., Mohanty, S.K., Majumder, et al.: Measurement of optical transport
properties of normal and malignant human breast tissue. Applied Optics, 40(1), pp.
176-184, (2001).

17. Schweiger, M. and Arridge, S. R.: The Toast++ software suite for forward and
inverse modeling in optical tomography. J Biomed Opt 19(4), pp. 040801 (2014).

18. Crum, W.R., Camara, O. and Hill, D.L.: Generalized overlap measures for eval-
uation and validation in medical image analysis, IEEE transactions on medical
imaging, 11(25), pp. 1451–1461,(2006)


