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Abstract

In scientific discovery, engineering, imaging, and machine learning, it is often critical
to understand what causes an event or observation, rather than focusing on correla-
tion/association alone. In order to make this complex topic more accessible I would
like to share what I learned on how causality can be applied and what concepts are
essential in doing so. I will introduce the graphical causal model (Bayesian network),
and show how you can translate human intuition on causality into formal axioms that
fuse the causal graph with the probability space from observed events. We will discuss
counterfactual causality, and end with an overview of recommendations on how to use
causality in practice as well as current open issues and relevant papers that tackle
those questions. 1
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Causality is key to thriving in an uncertain world

From intuition to causality

Somehow humans learn to control a
very diverse environment

One part of this process is
understanding how a certain need
(effect) can be met

Understanding ∼ causality

Cognitive psychology still cannot explain how a small child
learns to understand and manipulate a complex world to
not only survive, but thrive.
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What is causality ?

Knowledge is power. –Francis Bacon

An event that ‘causes’ another event ?

Logical : X ⇒ Y

Probabilistic : P(effect|cause) > P(effect) (Mellor, Suppes)

Interventional : P(effect | do(cause)) > P(effect | do(!cause)) (Pearl [6])

Boolean: ∃(c, !c), (a, !a) ∀c, a,∈ C,A

Continuous : Var(Cause) ∼ Var(Effect)

How big of an effect ?

Not everyone believe{d,s} modelling causality can be formally done, or is feasible

Bertrand Russell : Causality is pre-scientific.

Karl Pearson : Let’s focus on correlation instead.

Fisher : Let’s develop experiment design ∼ test 1 while fixing all other variables.

Causality is an intuitive, utilitarian relation of events
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Causality is key to interacting with a complex world

Past Future

X Y

X Y

Events

Discovery
Learn existing causal

information

Z Y

2X+1 Y
Control

Exploit in real time to
maximize utility

Z

'causes'

Learning

Speculate

Observe

Exploit

Counterfactual/Intervention
Learn potential causal

information

An overview of the intuition behind causality, and the different tasks required in understanding the world.
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A Universal Axiomatic Model

Translate intuitive understanding into an unambiguous model

Causality is

A relation Xi → Xj , Xi ,Xj ∈ X that is:
Irreflexive: Xi ↛ Xi
Transitive: Xi → Xj , Xj → Xk ⇒ Xi → Xk
Antisymmetric: Xi → Xj ⇒ (Xj ↛ Xi )

A Graphical Causal Model on an event space X, described by a graph
G<V(X),E,M> and probability space P(X)
Link probability space and graph with axioms encoding intuition:

Markov Causal Condition
Minimality
Faithfulness
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A Universal Axiomatic Model

Translate intuitive understanding into an unambiguous model

Parent

Exogenous

Markers
causes

X

Y

Ɛ
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Indirect Direct
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Observation Xi Xj

Xi XjRelation

Functional
model

f(Xi)Xi Xj

The Graphical Causal Model

GCM : G<V,M,E>, P, F

Given observations X from events E

Vertices: observations X
Edges: relations
Markers 

Probability space P(X)
Function space F(X)

Graph: causal structure

X Y Z

Q
X    Q
X    Z | Y

Probability

Topology

Hierarchy

Encoding

unknown

no cause

ShieldedZY

X

Confounder

The complete cheat sheet for GCMs in all your future causal research.
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The Markov condition

GCM G(V,E) and probability space P

W ∈ V

Q = V − {Parents(W ) ∪ Descendants(W )}
P(W ,Q|Parents(W )) = P(W )P(Q)

A B

D

C

Markov

The Markov Condition illustrated: P(A,B,C,D) =
P(A)P(B)P(D|C)P(C|A,B)
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The Markov condition can be easily broken

C

PS

C: Switch
S: Sound
P: Picture

A counter-example. A television set has a faulty switch that not always turns it on. When the TV is on, both sound and
picture are produced. P(S|C) < P(S|P, C). A more current example are my bluetooth headphones that connect
only 90% of the time, where S, P are the left and right ears respectively.
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Statistical Paradox 1 : mixing data (Yule, Pearson)

Suppose gender determines if a person has a certain trait.
Assume P[male ∧+] = 1/2,P[female ∧+] = 1/10

Joint probability table

F S Both M D Both
+ + 0.25 + + 0.01
+ - 0.25 + - 0.09
- + 0.25 - + 0.09
- - 0.25 - - 0.81

Table: F(ather), S(on), M(other), D(aughter)

Joint probability table ignoring gender

Parent Offspring Both
+ + 0.13
+ - 0.13
- + 0.17
- - 0.53

Table: P[Offspring, +] = 0.3, P[Offspring | Parent,+]=0.43.
[10]

Conclusion on mixed data : Trait is caused by inheritance.

Conclusion on unmixed data : Trait is caused by gender.

1

1Example adopted from [10]
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Statistical Paradox 1 : mixing data (Yule, Pearson)

Gender

Inheritance Trait Inheritance Trait

Gender

GCM of the previous example. Mixing data leads to confounders, and can break Markov condition, as well as lead to
false causal observations.
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Statistical Paradox 1 : mixing data (Yule, Pearson)
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Mixing independent variables dependent on an third variable causes spurious correlation

Karl Pearson showed that mixing 2 independent variables (red, blue) is certain to lead to non-zero correlation except
in the case where the distributions of the 2 variables, given a third, overlap exactly (e.g. identical mean)
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The Markov condition

C

PS

C: Switch
S: Sound
P: Picture

D

C: Switch
S: Sound
P: Picture

e

C

PS

D: Circuit

e: error

The correct model: introduce latent error and explicit circuit. This example was used to challenge the applicability of
the Markov axiom, also leads to introducing the concept of determinism in causality.
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The limits of Markovian conditions

A quantum event E with a state S produces 2 particles (e.g. +, -).
Laws of conservation: particles must have correlated variables

Quantum physics (Bell’s inequality):
∃ ‘hidden’ state S ⇒ it must be non-local (breaking Markov)

Markovian causal relations exist at macro scale only.
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Determinism

D

C: Switch
S: Sound
P: Picture

e

C

PS

D: Circuit

e: error PS

PS

PS

e

Pseudo-deterministic

P = f(S)

P != f(S)

P = f(S+e)

Non-deterministic

Random latent

Deterministic

A causal relation can be (non)-deterministic. A indeterministic GCM that can be made deterministic with the addition
of latent random variables is pseudo-indeterministic. More formally: P = f(g(S,e), d) where e is the random effect on
S, d is the observation error.
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Minimality

A B

D

C

A B

D

C

Minimal

A    {C, B, D} A    {C, B, D}

Not Minimal

Minimality: If a GCM G with probability distribution P has a subgraph that is Markovian, then G is not minimal.
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Faithfulness

A

D

CB

Faithful

A

D

CB

Not Faithful

D    A

+

+

-

-

!D    A

Faithfulness: If the probability space P has A, D independent, yet there is a path in GCM G, then G and P are not
faithful. Example: 2 linear effects that cancel each other out. (Kendall, Simpson)
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Paradoxically causal

Simpson’s paradox/reversal: Given a positive effect in both subpopulations, observe a
negative effect in the joint population.

Male E !E Recovery Female E !E Recovery Combined E E! Recovery
Drug 18 12 60% 2 8 20% 20 20 50%
!Drug 7 3 70% 9 21 30% 16 24 40%

Table: Illustration of Simpson’s paradox, where E indicates ’Effect’, e.g. survival. 2, [7] The paradox can lead to
breaking the faithfulness condition.

Why does this reversal happen?

Simpson’s reversal is the consequence of gender inducing frequency shift in
subpopulations (in this example men take the drug more often)

The numerical effect is sound (algebraic)

The paradox follows from our mismatched perception and interpretation.

P(E |C) > P(E |!C) ; C causes E ?

Exercise for the reader: Can you have 2 positives that combine into a neutral
effect?

2https://ftp.cs.ucla.edu/pub/sta_ser/r414.pdf

Ben Cardoen Causal Intro Dec 18th, 2020 17 / 31



Causality Axioms fuse probability with GCM Causal Discovery Algorithms Causal Calculus Challenges Conclusion References

Paradoxically Causal

Simpson’s paradox/reversal: Given a negative effect in both subpopulations, observe a
positive effect in the joint population.

Male E !E Recovery Female E !E Recovery Combined E E! Recovery
Drug 18 12 60% 2 8 20% 20 20 50%
!Drug 7 3 70% 9 21 30% 16 24 40%

Table: Illustration of Simpson’s paradox, where E indicates ’Effect’, e.g. survival. 3, [7] The paradox can lead to
breaking the faithfulness condition.

Resolving the paradox by differentiating between evidential and interventional causality

P(E |C) > P(E |¬C) : Does not mean : C increases/causes E

P(E |C) > P(E |¬C) : Means: C is evidence for E, but can be subject to common
causes.

P(E |do(C)) > P(E |¬do(C)) : C causes E (to improve).

3https://ftp.cs.ucla.edu/pub/sta_ser/r414.pdf
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Common Effect Conditioning

Independent variables can become
dependent on a common effect

P(Battery=empty, Fuel=empty) =
P(Battery=empty)P(Fuel=empty)

P(Battery, Fuel | Car !Start) ?

Empty fuel tank in combination with
starting car => battery cannot be
empty, independence is replaced by
conditioning on common effect.

Battery Fuel

Car
starts
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Causal Discovery Algorithms

Should be general, scalable, robust,
efficient, converging

Constraint based
Statistical independence tests, general
Cannot solve 2 variable case, large
sample size needed

Scoring Functions
Require a model of causality, can solve
2-var problem
Specific assumptions needed
Generalized Scoring Functions[4]

Illustration of PC (constraint based), using (conditional) in-
dependence tests to retrieve the causal structure. (source
[2])
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Finding Causal Direction

Given only 2 variables, can you find the causal direction ?

Let’s assume Y = bX + ϵ,X ⊥⊥ ϵ

Y X

e ?

X Y

e ?

Which is the cause and which the effect, and how do you find out?
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Finding Causal Direction

Illustration why, when at least one of X or ϵ is non-Gaussian, you can always recover direction of causality in continu-
ous variables [2]. The regression error (column 2,4) is not independent for the incorrect direction (ICA theory). Figure
reproduced from [2]. 4

4If the data has no noise, can you still find direction between cause/event?
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D-connectedness

D-connected : conditional independence on a Markov GCM

X, Y are d-connected, given
W, iff

undirected path U : X..Y
has no collider (not in W)

U has no vertex in W

U has a collider in W

X, Y | W d-separated :
P(X,Y|W) = P(X|W)P(Y|W)

A DC

A DC

R1

A DCR2 E Z = {C}

Z = {}

Z = {}
Collider

Conditioned onA, D are d-connected

A DCR3.1 E Z = {F}

F

A DCR3.2 E Z = {C}

F

Descendant of collider

Descendant of collider

Directional connectedness in a GCM allows you to read the model to query
which events can be related given a set of known events.
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Do-operator (Pearl), or Causal Calculus

Intervention: P(cancer | Smoker = yes)?
Causal calculus can avoid expensive or unethical double blind experiments.

do(x) ⇒ X = x

Ignore observation:
p(y|do(x), z, w) =
p(y|do(x), w) if
(Y ⊥⊥ Z |X , W )GX

Action to observation:
p(y|do(x), do(z), w) =
p(y|do(x), z, w) if
(Y ⊥⊥ Z |X , W )GX,Z

Ignore action:
p(y|do(x), do(z), w) =
p(y|do(x), w) if
(Y ⊥⊥ Z |X , W , GX,¬(z→w)

d-connectedness is
essential to resolve X ⊥⊥ Y |W
queries in GCM

Discovery Counterfactual

Z

X

Y

Z

Y

X

Z

Y

X
X=x

Y

Intervention

Observation

Ex. Rule 2

ZX

Y

F

Backdoor path
to Z

Effect of interest

Condition on XY to isolate F-Z

Causal calculus enables expressing observations, ac-
tions|interventions and their probabilities in the context of a
GCM. Intervention graphs: GX (V,E’): E′ = E \ {(x, k)∀k ∈ V},
GX (V,E’): E′ = E \ {(k, x)∀k ∈ V}. Intuition: if I control X, no other
cause of X is relevant.

5
5Adapted from https://www.cs.ubc.ca/labs/lci/mlrg/slides/doCalc.pdf
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Research frontier of open problems

Time series[5]

Heterogeneity/Non-stationary: The causal process changes over time or
datasets [11]

Mixed data [8]

Measurement error: Cause X, effect Y, Y = f (g(X , ϵ), δ) What is the impact of
not knowing ϵ, δ? [12]

Selection bias (Simpson, Berkson paradox)

Missing data
Causal learning: e.g., in semi-supervised learning, when features are causes of
the outcome, unlabelled data will not necessarily improve performance [9].
Similarly, in transfer learning it is of interest to transfer the causal relation rather
than the association/correlation function.

Scaling (number of variables): number of acyclic paths in G(V,E) of length k = k!
Causal algorithms are bound (for now) by non-linear relations to the number of
variables (dimensions).

6

6Intuitive difference: Machine learning : learn transformation of data into output, Causality: learn nature of the
process generating the data
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Temporal Causality X → Y ⇒ X ‘before‘ Y?

Granger ‘Causality’

if cause (X) precedes effect (Y)

if cause has unique information
determining future values of effect

Information of system at time t : It

P[Yt+1 ∼ Z |It ] ̸= P[Yt+1 ∼ Z |(I \ X)t ]

Heidegger: Interpretable Causal
Discovery[5]

Causal Profile Discovery

Assume cause X, effect Y

Which pattern (/time) should X follow to
maximize effect Y?

Applications: dementia (age), cancer
(drugs), ...
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Unravelling temporal statistics is a hard problem con-
founded (pun intended) by our ill-defined concepts of
time(span), causes, effects. sin((x − 10) + ϵ versus
sin((x) + ϵ
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Causality on non-continuous data

Causal direction finding in continuous data is easier compared to discrete,
categorical or mixed data. (defining additive noise for e.g. categories is non-trivial)

Idea : Learn a hidden compact representation (HCR)

HCR aims to encode low cardinality ’true’ causal variable

Learn M : X → Y ′ → Y ,M′ : Y → X ′ → X

BIC score (M, M’) decides which causal direction is likely.

Learning an encoding from categorical space enables more powerful continuous space causality inference algo-
rithms.[1]
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Explaining image classification with causal learning

Cars are often seen in images with bicycles (correlation is high)
Presence of car can be misleading ’explainer’ for classification of bicycle
Does the concept ’car’ explain classification? : p(class=bicycle | do(car))

An example of recent work [3], images courtesy of original work. A network can learn to generate counterfactuals
and learn which concepts do explain the classification. Orientation of the white rectangle is the class, the concept is
the color (green,red)
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Fin

Causality is a human intuition essential to understanding a complex world that can be
formalized (it took >100 years to do so)

Takeaway message(s)

Understand your data

Understand the axioms under which a given causal model is valid

Understand and formulate your query

Have fun :)

Try it yourself
https://www.ccd.pitt.edu/

Acknowledgements

I would like to thank Prof. Ghassan Hamarneh, Dr. Weina Jin, Dr. Sieun Lee, Prof. Martin Ester,
Darren Sutton, and all the members of my lab for the many discussions that made it possible for me
to begin to understand this complex topic, and for their support.

Ben Cardoen Causal Intro Dec 18th, 2020 29 / 31



Causality Axioms fuse probability with GCM Causal Discovery Algorithms Causal Calculus Challenges Conclusion References

References I

Ruichu Cai et al. “Causal discovery from discrete data using hidden compact
representation”. In: Advances in neural information processing systems 31
(2018), pp. 2666–2674.

Clark Glymour, Kun Zhang, and Peter Spirtes. “Review of causal discovery
methods based on graphical models”. In: Frontiers in genetics 10 (2019),
p. 524.

Yash Goyal et al. “Explaining classifiers with causal concept effect (cace)”. In:
arXiv preprint arXiv:1907.07165 (2019).

Biwei Huang et al. “Generalized score functions for causal discovery”. In:
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2018, pp. 1551–1560.

Mehrdad Mansouri et al. “Heidegger: Interpretable Temporal Causal Discovery”.
In: Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. 2020, pp. 1688–1696.

Judea Pearl. Causality. Cambridge university press, 2009.

Ben Cardoen Causal Intro Dec 18th, 2020 30 / 31



Causality Axioms fuse probability with GCM Causal Discovery Algorithms Causal Calculus Challenges Conclusion References

References II

Judea Pearl. “Comment: understanding Simpsons paradox”. In: The American
Statistician 68.1 (2014), pp. 8–13.

Vineet K Raghu et al. “Comparison of strategies for scalable causal discovery of
latent variable models from mixed data”. In: International journal of data
science and analytics 6.1 (2018), pp. 33–45.

Bernhard Schölkopf et al. “On causal and anticausal learning”. In: arXiv preprint
arXiv:1206.6471 (2012).

Peter Spirtes et al. Causation, prediction, and search. MIT press, 2000.

Kun Zhang et al. “Causal discovery from nonstationary/heterogeneous data:
Skeleton estimation and orientation determination”. In: IJCAI: Proceedings of
the Conference. Vol. 2017. NIH Public Access. 2017, p. 1347.

Kun Zhang et al. “Causal discovery in the presence of measurement error:
Identifiability conditions”. In: arXiv preprint arXiv:1706.03768 (2017).

Ben Cardoen Causal Intro Dec 18th, 2020 31 / 31


