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A B S T R A C T

Novel portable diffuse optical tomography (DOT) devices for breast cancer lesions hold
great promise for non-invasive, non-ionizing breast cancer screening. Critical to this
capability is not just the identification of lesions but rather the complex problem of dis-
criminating between malignant and benign lesions. To accurately reconstruct the highly
heterogeneous tissue of a cancer lesion in healthy breast tissue using DOT, multiple
wavelengths can be leveraged to maximize signal penetration while minimizing sen-
sitivity to noise. However, these wavelength responses can overlap, capture common
information, and correlate, potentially confounding reconstruction and downstream end
tasks. We show that an orthogonal fusion loss regularizes multi-wavelength DOT lead-
ing to improved reconstruction and accuracy of end-to-end discrimination of malignant
versus benign lesions. We further show that our raw-to-task model significantly reduces
computational complexity without sacrificing accuracy, making it ideal for real-time
throughput, desired in medical settings where handheld devices have severely restricted
power budgets. Furthermore, our results indicate that image reconstruction is not nec-
essary for unbiased classification of lesions with a balanced accuracy of 77% and 66%
on the synthetic dataset and clinical dataset, respectively, using the raw-to-task model.
Code is available at https://github.com/sfu-mial/FuseNet

1. Introduction

Breast cancer is the most frequently diagnosed cancer among
women [1]. Pre-screening is usually carried out using self-
breast examinations, which can suffer from high false-positive
rates, or clinical breast examinations [2]. Although breast
lumps are often benign, such as lipoma, cyst, or hamartoma, le-
sion malignancies may appear with a non-palpable sign; hence,
regular screenings are critical [3]. While mammography is the
most commonly used screening tool today, it has potential cu-
mulative health risks due to its reliance on ionizing radiation
and low sensitivity in patients with thick breast tissue [4]. Fur-
thermore, the acquisition device’s complexity and size limit pa-
tient screening throughput [5].

Imaging modalities based on near-infrared light are emerg-
ing as tools for biomedical diagnosis, given the non-ionizing
nature of infrared light as well as their ability to penetrate a
few centimeters into human structures, such as the skull, brain,
and breast [6]. The recent progress of optical sensors makes
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optical-based modalities increasingly attractive. Diffusion opti-
cal tomography (DOT) uses near-infrared light to image soft
tissues, offering several advantages in terms of safety, costs,
portability, and sensitivity to functional changes [7]. This tech-
nique has shown great potential in investigating functional brain
imaging [8, 9] and breast cancer screening [10, 11]. Fig. 1-A
shows a typical breast screening workflow in the medical set-
ting.

DOT measures the distribution of tissue optical properties as
a function of absorption and scattering coefficients. These prop-
erties are closely correlated to physiological markers and allow
indirect quantitative assessment of tissue malignancy [7, 12].
Indeed, marked variations between healthy and tumor tissue are
observed in terms of optical properties and chromophore com-
ponents (e.g., oxy/deoxy hemoglobin and collagen) [13]. In
particular, normal breasts and lesions can be separated in terms
of optical coefficients at several wavelengths [14, 12, 15].

These properties make DOT a potentially promising tool
in the pre-screening of patients in a clinical setting, saving
them from unnecessary exposure to more precise but poten-
tially harmful ionizing modalities such as CT. In such a setting,

https://github.com/sfu-mial/FuseNet
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Fig. 1. Typical breast cancer screening workflow. (A) Images reconstructed by an inverse model, from signals collected by the acquisition hardware,
are analyzed for assessment, diagnosis, and treatment prognosis. (B) Screening pipelines can be divided into two paradigms: (i) Accurate reconstruction
followed by image based classification. (ii) A direct prediction model omits image reconstruction to focus solely on the ultimate task and can help overcome
sub-task errors, e.g., reconstruction induced false positives, marked by red triangles in this scenario, in paradigm (i).

there is a clear need for both low latency, i.e., method infer-
ence speed, preferably real-time, and accurate reconstruction
and classification.

A DOT scanner is comprised of an array of emitters and re-
ceivers, using low-powered LEDs or lasers to measure the opti-
cal transmission [16] or reflection [10] of light beamed into the
tissue at various locations on the tissue surface. While an opti-
mized probe design enables reduced hardware complexity and
better portability, it increases the complexity of the reconstruc-
tion task, mainly when the number of sources is limited [17].

1.1. DOT Reconstruction Algorithms

DOT image reconstruction is an ill-posed inverse problem,
subject to artifacts [18]. Reconstruction quality and depth sensi-
tivity are inversely proportional to the distance between source
and detector and noise level, and strongly depend on the recon-
struction method [19]. In addition, the highly heterogeneous
nature of malignant cancerous tissue further complicates the re-
construction task [20]. A portable design with a limited power
budget, significantly reducing the number of available sensor-
detector pairs and the available computational envelope for re-
construction, complicates matters further by increasing the ill-
posedness of the reconstruction problem. We refer the inter-
ested reader to Aspri et al. [21] for a more in-depth mathemati-
cal modeling and review.

While difference imaging approaches rely on a reference
measurement to recover the change in the tissue’s optical prop-
erties, e.g., a reference tissue, a phantom, or the previous condi-
tion like a rest stage in brain DOT, absolute imaging approaches

use a single set of measurements to reconstruct optical coeffi-
cients. In this manuscript, we focus on absolute imaging.

Traditional image reconstruction techniques commonly rely
on non-linear methods minimizing an objective function, itera-
tively until convergence, e.g., gradient and Newton-type meth-
ods [37]. Based on an initial homogeneous tissue optical prop-
erties estimate, the difference between the measured signal and
the modelled data is used to iteratively update the estimate until
achieving convergence within acceptable limits with the mea-
sured data. Regularization terms are leveraged to ensure con-
vergence by restricting the space of all possible solutions to
only a subset of physically plausible ones. A comprehensive
review is presented in [19].

Even though non-linear methods follow directly from the un-
derlying mathematical problem formulation, in practice they
have a high computational cost as each iteration needs to be op-
timized independently at reconstruction time, prohibiting real-
time reconstruction. Furthermore, the reconstruction accuracy
is easily compromised as the number of sources and detectors
is reduced, and reconstruction of complex shapes can become
challenging [18]. To address these shortcomings, researchers
have explored deep learning (DL) as an alternative approach
[38, 39]. A deep learning model for DOT reconstruction is
typically trained in a supervised setting on in silico or phan-
tom training data pairs. By incorporating complex and diver-
sified data samples, the model can selectively enrich its fea-
ture space to improve performance on real-world data. Recent
studies, e.g., [25, 17, 29, 26], have shown image reconstruc-
tion and classification are faster and more accurate when deep
learning algorithms are used instead of conventional reconstruc-
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Table 1. Regularization approaches in state-of-the-art DL-reconstruction methods. D: design approach; FF: feed-forward, I: iterative unrolled based
model; M: multi-modal/wavelength; S/P: in silico/phantom data; and C: clinical patient data.

Ref D M S/P C Approach to mitigate ill-posedness

Sabir et al., Ben Yedder et al.(2018), Nizam et al.(2022) [22, 23, 24] FF × ✓ × CNN learns the nonlinear end-to-end mapping
Ben Yedder et al.(2019) [25] FF × ✓ × Promote appearance similarity
Mozumder et al.(2021), Mozumder et al.(2022) [26, 27] I × ✓ × Augment Gauss-Newton algorithm with deep learning
Nizam et al.(2023) [28] FF ✓ ✓ × Micro-CT structural prior
Yoo et al. [29] FF × ✓ × Model based on Lippmann-Schwinger equation
Fang et al. [30] FF × ✓ × Reflection model as sum of features from different depths
Zhao et al. [31] I × ✓ × Data-driven unrolled network promoting appearance similarity
Zou et al.(2021), Li et al., Zou et al.(2022) [32, 33, 34] FF ✓ ✓ ✓ Multi-modal representation learning (US+DOT)
Ben Yedder et al.(2021) [17] FF × ✓ ✓ Deep spatial-wise attention network
Ren et al. [35] FF × ✓ Adaptive sampling based neural fields
Murad et al. [36] FF × ✓ Dual signal and image encoder network
Ours – FF ✓ ✓ ✓ Orthogonal multi-wavelength representation learning

tion methods. One advantage deep learning-based algorithms
have over classical reconstruction methods is that they can ex-
ploit implicitly learned feature encodings from the DOT sen-
sor data, whereas classical reconstruction algorithms can ex-
ploit only priors encoded by human designers [38]. Recent ad-
vances tackle the problem of ill-posedness in a variety of ways.
We summarize the closely related approaches in a tabulated
overview (Table 1), and refer the interested reader to [39, 40]
for a more in-depth review.

1.2. Multi-wavelength DOT

The primary motivation for multi-wavelength DOT is to
exploit the different but complementary responses of chro-
mophores, found in different breast tissue components, to multi-
wavelength excitation, given that chromophores absorb photons
at different rates at distinct wavelengths [41]. A multi-spectral
image can be obtained using several LEDs or lasers of multiple
wavelengths as illumination. The different LEDs can be used
consecutively to capture an image per wavelength or combined
as one multi-spectral image [42].

The captured multi-wavelength data can provide more spatial
and contextual information, enabling more robust and accurate
identification and discrimination of disease-correlated biolog-
ical anomalies [12]. This wavelength sensitivity is leveraged
to analyze optical spectra and reconstruct images of the ex-
posed tissue for diagnostic purposes, given that recovered chro-
mophore concentration changes can convey information about
functional brain vascular events and the characterization and
monitoring of breast lesions [43]. The choice of wavelength in
DOT involves a trade-off between improved separation of op-
tical properties and the limitations associated with decreased
penetration and reduced signal-to-noise ratio [44, 45]. The spe-
cific requirements of a given imaging task will dictate the opti-
mal balance between these factors.

Utilizing multi-wavelength data for improving DOT image
reconstruction and diagnosis has been an active field of re-
search, illustrating that the accuracy of the optical coefficient
can be improved using measurements with multiple wave-
lengths [46, 47, 42, 48]. Recent studies, summarized in a
tabulated overview (Table 2) have shown that using measure-
ments with multiple wavelengths can improve the recovery
of optical coefficients and provide higher SNR and lower er-
ror [49, 42]. Improvement, however, depends on wavelengths

selection scheme and utilized instrument given the specific
noise impact [48]. This finding is supported by Zimek et
al. [50], who reported that adding dimensions can harm dis-
criminative potential if those dimensions do not improve the
signal-to-noise ratio.

Augmenting DOT with ultrasound is finding recent adoption
as well, an example of multi-modal fusion [51, 52, 53], [54].
The aforementioned art is based on conventional reconstruction
algorithms. To the best of our knowledge, no deep learning-
based method has explored the merit of exploiting multiple
wavelengts in DOT-reconstruction and diagnosis.

1.3. Multi-wavelength as Data Fusion

Data fusion models mimic higher cognitive abstraction in the
human brain by synthesizing information from multiple sources
for improved decision-making. While data fusion is non-trivial,
the resulting contribution of multiple data sources or multi-
modal data can significantly improve the performance of deep
learning models [58, 59]. The underlying motivation for col-
lecting multi-modal data is to learn the optimal joint represen-
tation from rich and complementary features of the same ob-
ject or scene. In the context of combining multiple informa-
tion sources to learn more powerful representations, the terms
‘early’ and ‘late’ fusion are commonly used [60]. Early fusion
refers to concatenating input data from multiple sources in sep-
arate channels before presenting it as input to the network. In
contrast, late fusion involves processing each input data individ-
ually and aggregating their output. Mid-fusion restricts cross-
data flow to later layers of the network, allowing early layers to
specialize in learning and extracting data-specific patterns [61].

Attention mechanisms have been shown to be suitable for
the fusion of features that usually suffer from confounding is-
sues such as conflicting or canceling information, correlation,
and noise. Attention provides an approach to learn to select
informative subsets of the data and the relationship between
data streams, before fusing them into a single comprehensive
representation [59, 62]. A multi-head attention architecture,
transformer based models have recently gained increased adop-
tion [63, 61]. However, the high computational cost and com-
plexity, scaling adversely with input sequence length, remain
a significant challenge, especially given the real-time require-
ment.
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Table 2. Multi-wavelength DOT for Image Reconstruction and Diagnosis. Di: dimension; Freq: frequency range; D: dataset, S: simulation, P: phantom,
C: clinical; and MF:Multi-Frequency.

Ref Leveraging different frequency schemes DI Freq
(MHz)

D

Chen et al. [49] Improve joint optical coefficients recons. 2D 100-250 S
Shifa et al. [42] Enhance fused MF image quality 2D 100-1000 S
Liu et al. [55] Compensate physiological and noise interference in recons. 3D 361-382 P
Kazanci et al. [56] Frequency shifting for reduced recons. ill-posedness 2D 100+5*i, ∀i ∈ {0, .., 100} S
Perkins et al. [57] Minimize the effect of phase data and improve contrast 2D {78, 141, 203} P
Applegate et al. [48] Evalutate the impact of frequency selection 2D 50-500 S
Taroni et al. [14] Discrimination between malignant and benign tissue 2D 283-472 C

Self-supervised learning (SSL) based on a joint embedding
architecture, driven by the maximization of the information
content of the network branches’ embedding, opened the door
to the application of joint-embedding SSL to multi-modal sig-
nals [64]. The idea is to produce independent embedding vari-
ables, removing confounding effects such as partial correlation
and avoiding modal collapse between data streams by encour-
aging architecture diversity between branches, using loss based
normalized cross-correlation matrix [65] or explicit variance-
preservation term for each embedding [64].

Imposing orthogonal constraints in linear and convolutional
neural network layers can act as a form of regularization that
can help improve task performance and be beneficial for the net-
work’s generalization [66, 67]. Orthogonality in feature space
was proposed to encourage intra-class compactness and inter-
class separation of the deep features, and has shown improve-
ment in classification tasks [68]. Multi-modal orthogonaliza-
tion has been used to force uni-modal embeddings to provide
independent and complementary information to the fused pre-
diction [69, 70]. Another advantage is that an orthogonal en-
coding can enforce the learning of a more sparse correlation-
free representation. The resulting smaller encoding can reduce
architecture dimensions, and serve as an implicit regularization.

1.4. Towards Direct Medical Image Analysis in DOT

Traditional computational pipelines in biomedical imaging
involve solving tasks sequentially (Fig. 1-B.i, e.g., segmenta-
tion followed by classification or detection). Although each
task is usually solved separately, the useful clinical informa-
tion extracted by the second task highly dependents on the first
task’s results. While a ‘joint’ or multi-stage model where differ-
ent tasks are lumped together, for example, image reconstruc-
tion then classifying diagnosis, can benefit from feature sharing
and joint parameters tuning for both tasks, significant computa-
tional resources are required to optimize sub-tasks that may not
necessarily lead to end-task improvements. In contrast, in the
direct medical image analysis [71] (DMIA) paradigm, end task
results are directly inferred from raw/original data (e.g., raw
sensors or whole image/volume) as illustrated in Fig. 1-B.ii.
Therefore, the model can focus solely on the end task, reclaim-
ing some of the computational resources for improved results
while requiring fewer resources. For instance, Wu et al. [72]
trained a neural network for joint reconstruction and lung nod-
ule detection from raw acquisitions and showed performance

improvement compared to a two-stage approach. Hussain et
al. [73] had shown that a segmentation-free kidney volume esti-
mation can help overcome segmentation errors and limitations
and reduce the false-positive area estimates. In a similar per-
spective, Taghanaki et al. [74] investigated a segmentation-free
tumor volume and activity estimation in PET images. More
recently, Abhisheket al. [75] illustrated that, in the context of
cancerous skin lesions, predicting the management decisions
directly can be a simpler problem to address than predicting the
diagnosis followed by management decisions, as one action can
be prescribed to multiple subsets of disease classes.

1.5. Contributions

We make the following contributions in this paper:
(i) We investigate the benefit of multi-wavelength data on

the quality of DOT reconstruction and breast lesion diagnosis.
Previously, many works have addressed the multi-wavelength
reconstruction problem or diagnosis, albeit using conventional
methods. Despite the importance of multi-wavelength acquisi-
tion for chromophore reconstruction, no deep learning frame-
work has investigated multi-wavelength fusion nor joint recon-
struction and diagnosis to date. Here, we present a novel ap-
proach designed to recover the optical properties of breast tis-
sue from multi-wavelength data with a deep orthogonal fusion
model followed by a diagnosis.

(ii) To the best of our knowledge, this is the first deep
learning-based method that investigates the merits of tackling
the diagnosis prediction task from raw sensor data directly with-
out image reconstruction in DOT (direct prediction 1). Results
with and without reconstruction are contrasted using a modular
pipeline, highlighting the potential of the raw-to-task model for
improved accuracy, while reducing computational complexity.

(iii) We extend a fusion network [62] by training models us-
ing an orthogonalization loss function [68] to maximize the in-
dependent contribution of each wavelength data and emphasize
their collective strength, with improved predictive performance
compared to a single wavelength model.

1While our direct prediction contribution omits the ‘tomogram‘ part of DOT,
and thus works directly on near-infrared (NIR) sensor data, our fusion contri-
bution applies both to tomogram reconstruction as well as tomogram-free re-
construction. Thus, we continue to use DOT throughout the paper instead of
NIR.
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Fig. 2. Architecture overview of the proposed DOT image reconstruction
and diagnosis method. (A) single-wavelength and (B) multi-wavelength
signals (y) along with corresponding ground truth diagnosis labels (ldiag)
and images (x) are used to train the model. In the single-wavelength
variant of our method (A), y, is used as input to the image reconstruc-
tion, then the resulting image is used for diagnosis prediction. In multi-
wavelength, note the two variants: (B.1) per-wavelength reconstruction
and (B.2) multi-spectral reconstruction and diagnosis. For both single and
multi-wavelength, the red dashed lines depict the raw-to-task flow, where
the image reconstruction is skipped and the diagnosis is predicted directly
from y. The bottom panel shows the details of the multi-wavelength fusion,
reconstruction, and prediction modules.

Section 2, introduces our proposed model for multi-
wavelength DOT fusion and defines the two prediction
pipelines (raw-to-task and joint reconstruction and diagno-
sis). Physics-based computational simulation and real patient
datasets are detailed in Section 3.1.1. In silico performance re-
sults are presented in Section 3.2 and results on real-world data
in Section 3.3. We conclude the paper by discussing insights
and limitations on interpretability, speed, and adaptive dynamic
treatment in Section 4.

2. Methodology

Solving the inverse problem in DOT recovers the spatial dis-
tribution of a tissue’s optical properties x ∈ RW×H based on
the measured boundary data yi ∈ RS×D×N , from S sources
(emitters) with D sensors (detectors) at different wavelengths
i ∈ {1,N}. The learned inverse function F −1(·) maps the raw
measurements y to an image estimate x̂ while remaining faith-
ful to the underlying physics constraints. Learning the inverse

function F −1(·) is carried out by solving:

θ∗ = argmin
θ
L
(
F −1(yi; θ); x

)
+ λR(F −1(yi; θ)) , (1)

where L and R are the network loss function and the regular-
ization, θ are the optimized network weights that parameterize
F −1. The reconstruction of an image based on the fusion of all
raw signals from diverse wavelengths is considered as well by
using the fusion network described in Section 2.1. While re-
constructing an accurate 2D/3D image/volume from collected
measurements has been the mainstream task in DOT, in a clin-
ical setting, the ultimate purpose is not necessarily obtaining
the image itself but rather making an informed clinical diagno-
sis or management decision, such as lesion detection and clas-
sification into predefined classes. To compare the impact of
omitting the reconstruction and directly predicting the end task,
we implemented two architectures: The first, FuseNet, reflects
classical approaches, i.e., a classification module is appended
to the output of the reconstruction layer to make a prediction,
where the result of the multi-spectral reconstruction is used to
supervise the classification task (Section 2.2). Whereas the sec-
ond, Raw-to-Task, uses the same classification module to make
a prediction based on the fused raw data directly, i.e., no recon-
struction is considered in between. The ultimate goal is to study
the ability of deep learning to provide superior prediction based
on the raw signal only while reducing model complexity and
computational cost (Section 2.3).

2.1. Fusion Network

Given multi-wavelength raw data paired with known diagno-
sis outcomes, the objective is to learn a robust multi-wavelength
representation in a supervised learning setting. While many fu-
sion strategies have been proposed in computer vision, natural
language processing, and multimodal biomedical data, strate-
gies for fusing data in multi-wavelength DOT data remain un-
explored in deep learning-based approaches. Inspired by recent
methods for multimodal data fusion [62, 69], we adopt a similar
attention-based mechanism to control the expressiveness of fea-
tures from each input wavelength before constructing the multi-
wavelength embedding, while uniquely feeding the raw data di-
rectly with no further pre-processing. Let Y ∈ RS×D×N×M be a
training mini-batch including M tissue samples, each collected
using N wavelengths such that Y = [Y1,Y2, ...,YN] where for
each wavelength i, Yi = [yi

1, ...y
i
M] includes data for M sam-

ples. When N > 1, input measurements from each wavelength
are combined using the fusion branch (Fusion, Fig. 2). To re-
duce the impact of noisy input features and compress the size
of the feature space, each Yi is first passed through a fully con-
nected layer of length F1, with ReLU activation, outputting
Y s

i ∈ Rl×1×M , followed by an attention mechanism that scores
the relevance of each feature in Yi. We define wavelengths ∋
as the set { j} such that j ∈ {1, ..,N} \ {i}, i.e., for wavelengths
other than i. A linear transformation WA of wavelengths Y∋,
that would score the relative importance of each feature in i,
is learned. WA is a learned weight matrix parameters for fea-
ture gating. The attention weights vector ai is then applied to
Y s

i , an element-wise product of scores and features, to form the
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attention-weighted embedding Y s′
i ∈ R

l×1×M :

Y s′
i = ai ∗ Y s

i = σ (WA ∗ [Y∋]) ∗ Y s
i . (2)

Finally, attention-weighted embeddings are passed through a
fully connected layer of length F2, with ReLU activation, then
combined through a Kronecker product between all wavelength
embeddings to capture possible interactions. Each vector is
appended by 1 to capture partial interactions between wave-
lengths [62]. The final fused embedding is then defined as:

F =
[

1
Y s′

1

]
⊗

[
1

Y s′
2

]
⊗ . . . ⊗

[
1

Y s′
N

]
. (3)

F ∈ Rl′×l′×l′×M , for N = 3 and l′ = F2 + 1, is a N-dimensional
hypercube of all wavelength interactions.

Table 3. Network Layers Description for Joint Multi-wavelength Recon-
struction and Diagnosis
Branch Description Details

Reconstruction Fully Connected Layer 128 × 128
Branch Convolutional Layer 32 channels, filter size 3, ReLU

Residual Attention Blocks 4 blocks, 32 channels, filter size 3, ReLU
Squeeze and Excite Modules Attention map: Convolutional layer with a 1x1 kernel,

Sigmoid activation,
Multiply input tensor element-wise
with the attention map

Prediction Convolutional Layers 2 FC layers with max pooling
Branch Classification Layers 2 FC final layers for diagnosis prediction

Fusion Gated Multimodal Units FC layers with ReLU, Gating mechanisms
Branch (multi-spectral branch)

Input Raw Data Y ∈ RS×D×N

Output Per-Wavelength Reconstructed Image xi
Rec ∀i ∈ {1, ..,N}

Multi-Spectral Reconstructed Image xFusion
Rec

Diagnosis Prediction ydiag

2.2. Joint Multi-wavelength Reconstruction and Diagnosis
The task is to recover tissue optical properties and diagno-

sis outcome given raw signal data. While a single wavelength
model SW-JRD (Fig. 2-A), used as a baseline, relies on a sin-
gle wavelength measurement to reconstruct spatially distributed
optical coefficients and predict diagnosis, a multi-wavelength
model (FuseNet) relies on a joint representation from multi-
ple wavelength measurements (Fig. 2-B). The multi-wavelength
model, including a network with multiple branches as shown in
(Fig. 2-B), inputs N measurements of the same scanned tissue
at N wavelengths. A multi-spectral image that combines all
wavelength measurements, using the fusion branch encoding
(Fig. 2-B.2), is reconstructed and passed to a classification mod-
ule for diagnosis prediction. Furthermore, a per-wavelength
image is reconstructed using each modulated wavelength sig-
nal. As depicted in (Fig. 2-B), the FuseNet model outputs are
xi

Rec ∀i ∈ {1, ..,N}, xFusion
Rec , and ydiag which denote the per-

wavelength reconstructed image (Fig. 2-B.1), the multi-spectral
reconstructed image, and the predicted diagnosis label (Fig. 2-
B.2), respectively.

Using multiple inputs, per wavelength network reconstruc-
tion branches (Fig. 2-B) learn independent representations,
where features derived from each input measurement (Yi) are
only useful for the corresponding output xi

Rec. Furthermore,
given the differences in initialization, the branches can con-
verge to disconnected modes in weight space, thereby behaving

as independently trained neural networks. Empirically, we ob-
serve that they converge to distinct optima. For this multi-task
reconstruction and prediction model, we extend the multi-task
framework [17] and train a model to simultaneously reconstruct
a per-wavelength image, localize the lesion, and predict the di-
agnosis.

The reconstruction branch (Fig. 2) implements the design de-
tailed in the multi-task framework [17] with a fully connected
layer, 128× 128, followed by a convolutional layer and 4 resid-
ual attention blocks with 32 channels, filters of size of 3 and
ReLU activation, to produce the final reconstruction image.
While the first and last layers are shallow feature extractors,
the attention blocks extract hierarchical attention-aware fea-
tures with modules of the form: two convolutions followed by
squeeze and excite modules. This deep spatial-wise attention
network attends to the most important features by reweighting
features according to their interdependencies in feature space
and filtering noisy ones. In contrast to the difference approach,
which uses a reference measurement of healthy tissue to com-
pute the contrasted inverse image, our reconstruction module is
designed to learn the mapping directly, from the measured data
to the desired output, without the need for any prior knowl-
edge or references that can bias the search space. Furthermore,
obtaining such a reference measurement from a homogeneous
background in a clinical setting, such as a breast cancer screen-
ing, is not trivial; hence, we consider absolute imaging, where
the network learns the inverse mapping between sensor mea-
surements and the image domain directly.

The prediction branch (Fig. 2) includes 2 convolutional lay-
ers with max pooling and two final classification layers. Raw
data from different wavelengths are passed to the reconstruc-
tion branch except for the multi-spectral subnetwork, where
raw data from different wavelengths are first fused via the fu-
sion branch. The fused features are passed to the reconstruc-
tion branch, which outputs a multi-spectral image followed by
a classification layer to output the final classification prediction.
Table 3 details the architecture for the joint multi-wavelength
reconstruction and diagnosis serving as a foundational frame-
work for other ablation architectures, which encompass subsets
of its components.

The multi-task loss (LMULT I) encompasses all three tasks:
reconstruction, lesion localization, and diagnosis as a sum of
losses for each task is defined as follows:

LMULT I = LREC + LDIAG (4)

where LREC and LDIAG denote the reconstruction loss and the
diagnosis losses, respectively.

2.2.1. Reconstruction loss
We adopt the reconstruction loss defined by Ben Yedder et

al. [17]. The mean square error loss LMS E combined with the
location loss LLOC guide the image reconstruction and lesion
localization of the network as per (5). LMS E recovers the pixel-
wise representation of the image.

LREC = LMSE + β LLOC,

LLOC = ||DT (F −1(yi, θ), x) − DT (x)||,
(5)
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Table 4. Summary of variants of our method architectures input and out-
put details’. N: number of wavelengths; S: sources; D: detectors; H:
height; W: width.

Input
Output

Direct prediction Joint reconstruction and diagnosis

Single-Wavelength Y1 ∈ RS×D
ydiag ∈ R

xRec ∈ RW×H

ydiag ∈ R

SW-DP SW-JRD

Multi-Wavelength Y ∈ RS×D×N
ydiag ∈ R

xi
Rec ∈ R

W×H ∀i ∈ {1, ..,N}

xFusion
Rec ∈ RW×H

ydiag ∈ R

Raw-to-Task FuseNet

where DT denotes the distance transform and computes the Eu-
clidean distance between the image pixel location and the lesion
boundaries, θ denotes the parameters of the multi-task model,
and β ∈ [0, 1] is a hyper-parameter controlling the contribution
of LLOC .

2.2.2. Diagnosis loss
The diagnosis loss, LDIAG, is a weighted sum of the categor-

ical cross entropy loss LCE , and the orthogonal projection loss
LOPL:

LDIAG = LCE + γLOPL, (6)

where: LCE = LCE

(
x, ldiag | Θ

)
= −

ndiag∑
j=1

ldiag, j · log
(
ϕ (x | Θ) j

)
,

LOPL = (1 − s) + |d|

s =
∑
i, j∈B
yi=y j

〈
fi, f j

〉
, d =

∑
i,k∈B
yi,yk

⟨fi, fk⟩ ,

(7)

ndiag, ldiag denote the number of classes in the diagnosis pre-
diction tasks and ground truth label, respectively. ϕ(x|Θ) j de-
notes the predicted probability for the jth class by the model
parameterized by Θ. γ ∈ [0, 1] is a hyper-parameter balancing
the contribution of the LOPL. |x| is the absolute value operator,
< x, y > the cosine similarity operator applied on two vectors,
and B denotes the mini-batch size.

The orthogonal projection loss LOPL, as defined in [68], is
used to maximize separability between classes by enforcing
class-wise orthogonality in the intermediate feature space and
simultaneously ensuring inter-class orthogonality (d term) and
intra-class clustering ((1-s) term) within a mini-batch.

2.3. Direct Prediction: Raw to Task Model

The ultimate aim of DOT-based screening is the early iden-
tification and classification of breast cancer lesions. Therefore,
we investigate if focusing exclusively on the end task, at the
cost of omitting the reconstruction of a 2D image, can perform
better or worse compared to classification with the intermediate
reconstruction. Without the need to reconstruct a 2D image, the
architecture and computational complexity reduce significantly,

Table 5. Optical coefficients distributions on the In Silico Dataset for wave-
lengths in 690-850 nm spectrum [76]

Healthy tissue Benign Malignant

Absorption
νa(cm−1)

690 0.042 ± 0.013

0.08 ± 0.04

0.110 ± 0.066
750 0.046 ± 0.024 0.100 ± 0.060
800 0.052 ± 0.015 0.118 ± 0.096
850 0.032 ± 0.005 0.124 ± 0.089

Scattering
νs(cm−1)

690 12.9 ± 2.3

19.4 ± 8.4

13.5 ± 4.7
750 8.70 ± 2.2 11.6 ± 3.9
800 10.5 ± 1.2 12.2 ± 1.7
850 8.40 ± 0.4 9.10 ± 1.9

leading to a reduction in power consumption and data compu-
tation latency. The classification module is used to make pre-
dictions based on the fused raw data, where combined features,
extracted from different wavelengths using the fusion branch
(Section 2.1), are passed to a convolutional layer for the pre-
diction task and a final classification layer with the associated
loss (Fig. 2-dashed lines). The diagnosis loss function, LDIAG, is
used to train the model given the raw input measurement where:

LCE = LCE

(
(yi, .., yN) , ldiag | Θ

)
= −

ndiag∑
j=1

ldiag, j · log
(
ϕ (y | Θ) j

)
,

(8)

yi denotes the ith measurement of the raw data and ϕ(y(i)|Θ) j

denotes the predicted probability for the jth class given an in-
put y(i) by the model parameterized by Θ. The orthogonal pro-
jection loss LOPL (7) is used to maximize separability between
classes in the feature space.

FuseNet, Raw-to-Task, SW-JRD and SW-DP models are
trained separately while using the same modules: fusion, recon-
struction, and prediction modules. Table 4 summarizes different
models input and output details.

2.4. Transfer Learning Network

In medical imaging settings, transfer learning [77] can be
used to bridge the gap between simulated and clinical data by
transferring knowledge learned from simulated data to improve
the performance of models on clinical data [78]. This is partic-
ularly important in medical imaging and relatively new imag-
ing devices such as DOB probes, where obtaining large quan-
tities of annotated clinical data can be challenging and expen-
sive. Similar to Ben Yedder et al. [17], we use transfer learning
to render an in silico trained network applicable to real world
data and reduce the disparities between real-world acquisition
yp and in silico simulated data ys. A multi-layer perceptron
(MLP) network is used to tackle the domain shift by minimizes
the transfer learning lossLT L over Np sets of real data measure-
ments obtained using a phantom solution and their correspond-
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ing tissue-equivalent simulated data:

θ∗ = argmin
θ
LTL(θ)

where

LTL(θ) =
Np∑
i=1

||ϕ(yp
i ; θ) − ys

i ||

+ α

Np∑
i=1

D−w+1∑
j=1

||ϕ(yp
[ j−w j+w]; θ) − ys

[ j−w j+w]||

(9)

w is the size of the sliding window, D is the number of detectors,
α is a hyper-parameter that is used to control the contribution of
the windowed mean absolute error loss. At inference time, the
final reconstructed and diagnosis results are computed as:

x̂∗ = F −1(ϕ(yp)). (10)

Lesion

Tissue

Emitters (sources S) Sensors (Detectors D)

Probe

800 nm

850 nm750 nm

690 nm

60 m
m

15 m
m

15 m
m

A

B

W2 W3 W4W1

Scan at a given location 

Time

Fig. 3. (A) Aligning the spatial distribution of simulated sources and detec-
tors with the physical layout of the probe (left). A sample synthetic mesh is
also shown (right). (B) The light sources can be turned on and off individu-
ally or sequentially, with a period of 83ms, sufficient for functional imaging
of biological tissue.

3. Results

We present results on both in-silico and clinical data. Results
were obtained by training the model on the in-silico data. A
transfer learning network, adapted from [17] and trained on a
phantom dataset, bridges the distributions shift that is unavoid-
able when switching between in silico and real world data. A
Gaussian noise was added to the signal, mimicking real world
signal fluctuation, to improve model robustness to sensor noise
and mimic the real-world drift of device characteristics on dif-
ferent clinics in between calibrations. This noise model depicts
the highly variable noise to each individual detector as caused
by sensor noise and interference of refracting light. Consis-
tent with previous work [17, 29, 79], we set σ = 10% of the
maximum sensor value. Besides the simulated noise, the probe
accounts for ambient light, the predominant noise source, as
well by capturing a frame without any active emitters and then
subtracting it from the actual data measurement, taken during

Table 6. Summary of clinical data
Tumor Position Tumor size (cm) Tumor Type

Patient 1 Left Breast 1 × 0.8 × 0.7 BI-RADS 72.5 × 0.8 × 0.8
Right Breast 1.1 × 0.8 × 0.7 Benign

Patient 2 Left Breast 2.2 × 1.7 × 1.7 BI-RADS 4
Patient 3 Left Breast 1 × 1 × 1 Non-invasive ductal
Patient 4 Left Breast 2.5 × 1.7 × 3.5 BI-RADS 5
Patient 5 Right Breast 2.4 BI-RADS 4
Patient 6 Right Breast 2.3 × 2.2 × 1.5 BI-RADS 4
Patient 7 Left Breast 1.7 × 1.4 × 1.2 BI-RADS 5
Patient 8 Left Breast 1.6 × 0.8 × 0.8 BI-RADS 5
Patient 9 Right Breast 2.2 × 2.1 × 2.3 Invasive ductal

clinical tests, before feeding it into our model. Performance
evaluation captures image reconstruction quality, diagnosis ac-
curacy, and speed. The next section provides details.

3.1. Experimental Design
3.1.1. Dataset

We simulate light propagation into tissue at different light
wavelengths, 690, 750, 800, and 850 nm, illuminating the tissue
sequentially, using the physics-based Toast++ software [80].
Probe geometry, with two LED sources and a row of 128 de-
tectors placed in the same straight line, as illustrated in Fig. 1-B
and Fig. 3, was configured to reflect real physical DOT probe
geometry [10], used clinically, in terms of the number and ge-
ometry of sources and detectors and the used wavelengths. We
collect training samples from synthesized tissues with known
optical properties and labels. Lesions are modeled as tissue
with perturbed optical coefficients embedded in an otherwise
homogeneous diffusive medium. A set of 2D images with var-
ious lesion sizes, shapes, and positions discretized into finite
element nodes (triangular meshes) is synthesized. In order to
mimic real breast tissue optical parameters’, we base the opti-
cal properties on realistic optical coefficient values that reflect
characteristics of real breast lesions, such as microcalcifications
and masses, [76, 14] as summarized in Table 5. A total of 4000
sample data pairs (256-D × 4 vectors, 2D image, label) are used
to train and test our method, with 1750 benign samples and
1750 malignant samples, respectively, and 500 healthy (i.e., le-
sion free). The optical distributions are randomly selected using
values from Table 5. Each sample includes the collected mea-
surement vectors, one for each wavelength, the ground truth
image, and the diagnosis label. The training dataset size is cho-
sen as a compromise between training time and in-silico per-
formance. We focused on the diversity of simulated scenarios
while also being mindful of computational resources. While
we note that in silico and phantom data can result in very large
datasets [81], we focused on the diversity of simulated scenarios
and adopted a dataset with various lesion numbers, sizes, and
depths to emulate realistic conditions where the optical prop-
erties of the anomaly and surrounding tissues were taken from
available in vivo breast tissue experimental data.

Our recently developed hand-held breast scanner (DOB-
probe) [10, 82] was used to collect real patient data to test our
method. The probe, as illustrated in Fig. 3, is composed of two
symmetrical multi-wavelength light-emitting diodes (eLED)
sources, illuminating the tissue symmetrically and delivering
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near-infrared light to a body surface at different points, and fea-
turing 128 co-linear equi-spaced detectors (a row) that measure
the back-scattered light from the tissue and emitted from the
boundary. Each eLED source consists of four different near-
infrared (NIR) wavelengths: 690, 750, 800, and 850 nm. The
penetration of photons within these wavelengths is optimized
due to the minimal absorption of breast fat and water at the se-
lected wavelengths. These encapsulated light-emitting diodes
serve as pencil beam sources, emitting light into the scattering
medium, and function as multi-wavelength pointed illumination
sources within the tissue. Note that the wavelengths share vari-
able overlap in the spectrum [14], motivating further the need
for orthogonal encoding. To train the transfer learning mod-
ule breast-mimetic phantoms, with known inhomogeneity loca-
tions, and DOB-probe were used to collect measurements [17].

Following the ethics and institutional review board approval
protocol 2, clinical data were collected from 9 participants di-
agnosed with breast tumors [83]. In a normal clinical pre-
screening exam, a breast is usually divided into four quad-
rants, and different measurements are collected on each quad-
rant. Given that the used probe is in clinical studies [10, 42, 17],
patients with known cancer localization are considered, and
sweeps over the lesion location and the opposite healthy breast
are collected. This step was essential to proving that the tech-
nology we introduced works well with human tissue. For each
patient, height, weight, age, and gender, as well as details of
the subjects’ breast cancer, briefly summarized in Table 6, were
recorded. The clinical dataset, reflecting the variety seen in
clinical practice, was designed to acquire sufficient variety of
sample from individuals presenting with benign tissue, masses,
and microcalcifications, while adhering to resource and ethi-
cal constraints, we refer the interested reader to [83] for fur-
ther details. Patients were placed in a supine position, and
scans at multiple points over the lesion location and healthy
breast were collected. On average, four different measurements
(scans) were taken on each breast. Even though no reconstruc-
tion ground truth is available for real-world data, it is invaluable
to detect robustness and real-world performance, with partial
ground truth known from other modalities on the same patients.
The precise location, size, and type of the tumor lesion were
determined via mammography, ultrasound, or biopsy. Note that
these details were only used for model performance evaluation
and metrics calculation, while raw sensor signal only was in-
putted to the model. Another advantage of our direct prediction
approach is that the absence of pixel-wise ground truth is less
problematic compared to reconstruction based classification, as
only the diagnosis label is required.

3.1.2. Implementation
Models were implemented in the Keras TensorFlow frame-

work and trained for 100 epochs on an NVIDIA Titan X GPU.
By optimizing the model’s performance on the validation set,
we set all hyper-parameters as follows: batch size to 16, learn-

2Farid Golnaraghi, Study Approval Feb 08-2017, Fraser Health, Certifi-
cate of Ethical Approval for Harmonized Minimal Risk Clinical Study, FHREB
2014-065

Table 7. Hyperparameters summary.
Hyperparameter Value

Framework Keras TensorFlow
Training Epochs 100

GPU NVIDIA Titan X
Batch Size 16

Learning Rate 10−4

Optimizer Adam
Initialization Xavier

Early Stopping 10 epochs
Data Split 80/10/10
β (Eq.5) 0.2
α (Eq.9) 0.5

D (Eq. 9) 4
γ (Eq. 6) 0.5

F1 32
F2 16

ing rate to 10−4, optimizer set to Adam, and initialization to
Xavier. Early stopping was used if the validation loss had not
improved within 10 epochs. To ensure a balanced and repre-
sentative in silico training process, we employ an 80/10/10 data
split strategy. This results in 3200 samples, per frequency, for
training, 400 samples for validation, and another 400 samples
for testing. For each class, the data split maintains the same
proportion across the training, validation, and test sets. This
approach ensures that our model is trained on a diverse range of
examples while still allowing for robust evaluation on unseen
data. Hyper-parameters β (5), α and D (9), and γ (6) were set
to 0.2, 0.5, 4 and 0.5, respectively. The fully connected units
for the fusion branch were set to 32 and 16 for F1 and F2, re-
spectively. Table.7 provides a comprehensive summary of the
model hyperparameters.

3.1.3. Evaluation metrics
To quantify the models’ robustness, we look at (i) lesion

localization error (Loc. Error); (ii) peak signal-to-noise ratio
(PSNR); (iii) structural similarity index (SSIM); and (iv) Fuzzy
Jaccard for reconstruction quantification, while the balanced ac-
curacy (BA), F1 score (F1), precision P, recall R, Matthews cor-
relation coefficient (MCC), and confusion matrix are reported
for the classification task quantification.

BA =
1
2

(
T P

T P + FN
+

T N
T N + FP

)

P =
T P

(T P + FP)
,

R =
T P

(T P + FN)
,

F1 = 2
P ∗ R
P + R

MCC =
T P × T N − FP × FN

√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

(11)

True positive (TP) is the number of correctly predicted sam-
ples as positive, while false positive (FP) is the number of
wrongly predicted samples as positive. False negative (FN) is
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Ground Truth R1 R2 R3 R4 RFusion

a

b

c

d

e

Fig. 4. Qualitative reconstruction performance of absorption coefficients using the FuseNet++ on in silico samples with varying ground truth lesion sizes,
locations, and numbers. Our multi-spectral results (RFusion) show an overall superiority in terms of generally improved background/foreground contrast
and a better differentiation between lesion sizes and lesion localization compared to per-wavelength reconstruction results (R1 to R4) at wavelengths 690,
750, 800, and 850 nm, respectively.

 Matthews Correlation Coefficients

Precision Recall 

F1 Score 

Balanced Accuracy 

Multi-Frequency

FuseNetSingle Freq FuseNet++ Raw-to-TaskConcat-All Raw-to-Task++

Fig. 5. Quantitative diagnosis performance of different models when one vs multi-wavelength are used. Overall results show improved prediction perfor-
mances in multi-wavelength models. Note the significant improvement when FuseNet is used compared to a simple concatenation (Concat-All). Results
using the FuseNet++ enforce the benefit of feature space orthogonality. Raw-to-task++, in which all network capacity is dedicated to the end task, shows
an overall performance gain.
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Table 8. Quantitative results on in silico test dataset.Losses are defined in Section 2-B; Loc.error: lesion localization error; PSNR: peak signal-to-noise
ratio; SSIM:structural similarity index; BA: balanced accuracy; F1: F1 score. †: value not supported by method, ‡: image reconstruction skipped.

Loss Loc. Error
(pixel, ↓)

PSNR
(dB, ↑)

SSIM
(↑)

Fuzzy Jaccard
(↑)

Runtime
(ms, ↓)

BA
↑

F1
↑LREC LCE LOPL

Single-Wavelength ✓ ✓ † 17.7 ± 21.9 19.1 ± 4.8 0.80 ± 0.05 0.60 ± 0.17 23 0.65 0.65
Concat-All ✓ ✓ † 20.4 ± 18.4 19.6 ± 6.2 0.73 ± 0.17 0.61 ± 0.18 28 0.63 0.65
FuseNet ✓ ✓ - 17.6 ± 23.3 20.2 ± 4.1 0.88 ± 0.05 0.62 ± 0.19 31 0.72 0.72
FuseNet++ ✓ ✓ ✓ 15.7 ± 12.7 21.2 ± 4.4 0.89 ± 0.03 0.64 ± 0.18 32 0.74 0.74
Raw-to-Task † ✓ - ‡ 15 0.74 0.72
Raw-to-Task++ † ✓ ✓ ‡ 15 0.77 0.75

the number of wrongly predicted samples as negative, while
true negative (TN) is the number of correctly predicted negative
class samples over the number of classes in the prediction tasks.
Recall quantifies the number of positive class samples properly
identified by the model, while precision measures the number
of correct positive predictions made by the model. BA, used
when quantifying performance on imbalanced data, measures
the average accuracy obtained from all classes. MCC measures
the quality of multi-class classifications and is informative in
cases of skewed class distributions.

For the computational cost at inference, we quantify the for-
ward pass of the model, measured in ms per example.

To evaluate the performance of our models, we contrast the
results when using one wavelength with many wavelengths in
the FuseNet and the Raw-to-task model. We present results on
in-silico data and clinical data.

3.2. Results on Synthetic Data

Trained on the in silico data and tested on a separate test set of
240 images, we compare the reconstruction and prediction per-
formance of our FuseNet and the prediction performance with
the Raw-to-Task counterpart.

3.2.1. Joint reconstruction and diagnosis
Figure 4, illustrates reconstruction results on selected in sil-

ico samples with different lesion sizes, numbers, locations, and
depths. In order to offer clinicians more details, results based
on each wavelength separately (Ri) as well as results that use all
wavelengths are shown, with the latter showing more consistent
performance. The joint model successfully exploits the pres-
ence of the different wavelengths and generally shows an im-
proved background/foreground contrast. For example, the dif-
ference in signature for 3 small but proximate lesions is marked
in different wavelength results (R1 to R4) (row c), while a more
accurately reconstructed sphere size is provided by the fusion
result RFusion in row (d). Detecting heterogeneity in lesions is
critical for correct treatment estimation given that it is a proxy
indicator of evolutionary pressure in the lesion, selecting for
more resistant cancer sub-populations. Table 8 presents the
quantitative results of the ablation study, where the contribu-
tion of different losses and modular choices of the architec-
ture to model performance are quantified. Rows 1 to 4 high-
light the benefit of using multi-wavelength fusion on the re-
construction task. A naive multiple wavelengths concatenation
will not necessarily improve results, which agrees with the find-
ings reported by [48], illustrating the impact of adding noisy

dimensions on performances. Nonetheless, we see improved
results for FuseNet. When fusion branch and LOPL are used
jointly (FuseNet++), the features contribution from each wave-
length is maximized in contrast to simple features concatena-
tion (Concat-All) at the price of a minimal computational in-
crease (only 9%).

Prediction performance highlighted in Table 8 and Fig. 5
show an overall improvement when more input wavelengths
are available, with a boost in performance when FuseNet and
FuseNet++ are used. Confusion matrices (Fig. 6-A,B) show a
clear discrimination between healthy and lesion features when
more data, in the form of more wavelengths, is available. Fur-
ther, improved benign and malignant discrimination is observed
when feature orthogonality is leveraged (Fig. 6-B) as well as a
reduction in healthy false negative.

3.2.2. Direct prediction
In Figure 6, similarly to the joint model, the direct prediction

model results using a single wavelength input (SW-DP) (Fig. 6-
A) are contrasted with raw-to-task prediction results using mul-
tiple wavelengths as input (Fig. 6-B). A clear discrimination be-
tween features is apparent when more data, in the form of mul-
tiple wavelengths, is available, especially when discriminating
between healthy and lesion; the primary application in DOT-
based screening deployments. Raw-to-task model significantly
reduces computational complexity (Table 8-Runtime), enabling
lower latency and higher throughput in real medical settings.
Next, we tested the contribution of individual loss function
terms and architecture component on overall diagnosis perfor-
mance. Figure 5 shows the diagnosis performance on the test
set for the best value of γ and highlights the benefits of the fea-
ture orthogonality constraint in breast cancer diagnosis, where
tumoral and non-tumoral breast lesion differentiation is chal-
lenging. Contrasting FuseNet++ and Raw-to-task++ (Fig. 5-6)
illustrates performance gain when all network capacity is dedi-
cated to the end task rather than intermediate ones.

3.3. Results on Clinical Data

We present qualitative reconstruction performance in Fig. 8
(and Appendix Figure A. 1 for all patients results), and quanti-
tative performance, Fig. 7, Fig. 9, and Table 9, on breast scans
from patients diagnosed with breast tumors. Results are com-
puted on all patients, with lesion details summarized in Table 6.
The probe is placed close to the likely location of each identified
lesion, and a set of scans are made. The opposite healthy breast,
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Fig. 6. Diagnosis prediction confusion matrices when (A) one vs (B) multi-wavelength inputs are used. Note the improvement in accuracy of unbiased lesion
classification (benign, malign) vs healthy when multiple wavelengths are used, as illustrated by the higher values along the diagonal. Results of FuseNet++
highlight the benefit of encouraging orthogonality in enhancing benign vs malignant separability while reducing healthy false negative. Raw-to-task++
further improves separability at the expense of minimal false negative (2%).

 Matthews Correlation Coefficients 
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Fig. 7. Quantitative diagnosis performance when one vs multi-wavelength are used on clinical dataset. Overall results show improved prediction perfor-
mances in multi-wavelength models compared to single wavelength and indicate that image reconstruction is not necessary for unbiased classification and
can even lead to biased results. Note the marked improvement when Raw-to-task++ is used compared to FuseNet++.
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Fig. 8. Qualitative reconstruction results in clinical patients with benign and malignant tumors. Approximate lesion sizes and locations were obtained with
joint modalities (details in Table 6). Note, in (A-C), the ability of FuseNet++ to reconstruct lesions. In (B), the robustness of orthogonal fusion to noise
(RFusion) compared to (R1 to R4) (healthy row) is highlighted. (C) highlights a false positive reconstruction case, marked with red triangles, that remain less
critical than false negative cases where a tumor is missed. Note the noisy reconstruction in R1 to R4, suggesting a quite noisy input signal. Comprehensive
reconstruction results for all patients can be found in Appendix file A.
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for each patient, is scanned as a contrastive reference. Weak la-
bels were attributed to each set of scans regardless of the probe’s
closeness to the tumor localization. The distribution of healthy,
benign, and malignant lesions in the clinical data is documented
in Table 9 (number of scans column). As a partial ground truth,
patients underwent mammography and/or Ultrasound scans to
obtain estimated lesion dimensions and biopsies to confirm tu-
mor type. While lesions are accurately reconstructed in most
cases, as shown in Fig. 8, with clear foreground and background
discrimination in RFusion as well as R1 to R4, healthy cases, cap-
turing only background readings, highlight a better robustness
of orthogonal fusion, RFusion, to noise.

Figure 7 reports quantitative prediction performance on sin-
gle vs. multi-wavelength data and highlights the overall im-
proved performance when more wavelengths are used. Note the
biased classification results when image reconstruction super-
vises the prediction task, FuseNet++, compared to direct pre-
diction from raw data, Raw-to-task++.

The confusion matrix, Fig. 9, shows improved discrimina-
tion between healthy and lesion features with the raw-to-task
model. If we consider that a key feature of the reconstruction
based classification is the interpretable angle of such results, we
note that the raw-to-task model has the added advantage, in ad-
dition to improved performances, that it omits potentially con-
founding explanations, where reconstruction artifacts can mis-
lead experts. Indeed, in recent work on explainable artificial
intelligence, such confounding explainers were identified as a
roadblock [84]. Table 9 reports raw-to-task model diagnosis
performances on each data class to highlight the clinical data
imbalance compared to a balanced training data scheme.

In Figure 8 and Appendix Figure A. 1, we illustrate some
failure cases at the limit of detection capability, with false pos-
itives (Fig. 8-C and Appendix Figure A. 1-G,H, marked with
red triangles) and false negatives (Appendix Figure A. 1-I).
For screening purposes, false negatives are more critical; false
positives would eventually be resolved by follow-up diagnosis.
Note that the discriminatory power of the detection is limited
by tumor depth, shape, and noise level. It may require several
scans over breast tissue in order to be captured. The failure
cases here are from a single scan measurement only, not aggre-
gated

Although the transfer learning network, trained using phan-
tom data, bridges to some extent the disparity between in silico
(training) data and real-world data, its performance on clini-
cal data reveals that it can still be misled by significant real-
world variations, such as differences in illumination and noise
levels. Additionally, since each tumor is unique, tumor hetero-
geneity can result in distinct acquisition signatures that may not
be presented in the training data. These failure cases high-
light the need for more clinical data (patient data) to better train
the transfer learning module. Current results present a proof of
concept, where validation on larger and more diverse datasets
is still required.

3.4. Effect of Lesion Localization on Accuracy

We quantify the effect of lesion location on lesion detection
accuracy in Figure 10, where we classify whether a lesion is

Table 9. Quantitative results on clinical dataset using Raw-to-Task++
Precision Recall F1-score Number of scans

Healthy 0.71 0.65 0.68 32
Benign 0.11 0.5 0.18 2

Malignant 0.78 0.68 0.73 44
Weighted-Avg 0.73 0.66 0.69 78

present or not. The penetration depth into breast tissue is ap-
proximately half the distance between the source and detec-
tors [85], ∼2.5 cm for our DOT probe. Our results confirm the
expected reduction in lesion detection accuracy as the lesions
decrease in size or increase in depth.

4. Discussion

4.1. Breast Lesion Characterization

The detection and characterization of breast lesions, such as
microcalcifications and masses, play a crucial role in breast can-
cer screening and diagnosis. Microcalcifications, identified as
tiny calcium deposits on mammograms, can serve as impor-
tant indicators of potential abnormalities in the breast tissue.
While microcalcifications may suggest benign conditions, they
can also be associated with malignant changes, highlighting the
need for careful evaluation and follow-up. On the other hand,
breast masses can manifest in various forms, including solid,
fluid-filled, or a combination of both. These masses may rep-
resent a wide spectrum of pathologies, ranging from benign tu-
mors to malignant lesions. Given the diverse nature of breast
masses, accurate characterization is essential for appropriate
clinical management and treatment planning. In our study, we
utilized absorption coefficients in the in silico data to simulate a
broad range of absorption and scattering characteristics reflec-
tive of real-world conditions. This approach aims to provide a
comprehensive understanding of the tissue properties and en-
hance the accuracy of our analysis. Our clinical dataset com-
prises patients presenting with microcalcifications, masses, and
benign tissue, reflecting the heterogeneity observed in clinical
practice. However, it is important to note that our primary ob-
jective was not to differentiate between subtypes of malignant
tissues. Instead, our focus was on assessing the method’s capa-
bility to discriminate between healthy, malignant, and benign
tissue exclusively. By doing so, we aim to guide clinicians
in identifying cases of malignancy and directing patients to-
wards appropriate follow-up modalities for further evaluation
and management.

4.2. Model Performance vs Interpretability

In order to be an effective tool in clinical settings, a clini-
cian’s trust is essential. A combination of good performance, as
quantified by accuracy and other metrics, and an interpretable
model increases trust. Neither deep learning based reconstruc-
tion nor classical iterative algorithms provide a path from pixel
to sensor value in a way that a clinician can easily under-
stand. While a reconstructed image may seem to increase in-
terpretability, it is typically not created in an interpretable way
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and is not necessarily causally related to the classification deci-
sion. Omitting the reconstructed image, while increasing per-
formance, would not therefore reduce the trust a clinician has
in our direct to task contribution.

To assess the performance of the algorithms, we employed
various image quality assessment metrics such as Loc. Error,
PSNR, Fuzzy Jaccard, and SSIM, as well as evaluated runtime.
Beyond using standard metrics, we emphasized the critical im-
portance of clinical outcomes by focusing on domain-specific
metrics: The evaluation of our methods considered patient di-
agnosis outcomes, which remains the most valuable measure in
the medical imaging domain.

4.3. Future Directions and Clinical Implications

Cancer treatment regimens, especially for treatment-resistant
lesions, are shifting towards adaptive or dynamic treatment
models, such as the recent game theory-driven treatment of
resistant prostate tumor patients [86] and treatment decisions
guided neoadjuvant chemotherapy [87]. However, these re-
quire accurate, unbiased, and specialized task-specific models.
Our raw-to-task approach can be extended to develop mod-
els specializing in multiple tasks, not just diagnostics. Exam-
ples are prediction of lesion type, progression, localization, and
tumor heterogeneity, all the way to successful treatment regi-
mens ahead of time, paving the way for adaptive personalized
medicine and disease management [75].

We demonstrated the direct improvements, achieved by in-
corporating the multi-wavelength fusion block and the direct-
to-classification approach. Future work may involve integrating
these two contributions into other baselines.

A key focus of this work was to leverage orthogonality in
mitigating confounding factors induced by multi-wavelength
fusion. However, as noted as early as 1936 by [88], orthogo-
nal representations need not be informative, and thus, in a deep
learning setting can also lead to orthogonal or independent en-
codings that are less or uninformative, as we encountered in our
own experiments. The heterogeneity of lesions, especially ma-
lignant ones, ensures that no two malignant lesions will likely
be the same, thus driving the need for diagnostic capability that
focuses on identifying the diverse lesion types, not necessarily
the reconstructed image.

Our raw-to-task approach offers potential benefits for dy-
namic treatment models in cancer care, enabling adaptive per-
sonalized medicine and disease management. However, it is
essential to acknowledge limitations and challenges, including
the need for accurate and specialized task-specific models, and
the potential sparsity of real-world patient data. Future research
directions may explore additional factors, such as lesion type
prediction and treatment regimen optimization, to further en-
hance clinical decision-making in breast cancer diagnosis and
management.

5. Conclusion

We introduce deep learning-based multi-wavelength orthog-
onal fusion for diffuse optical tomography with end-to-end clas-
sification of malignancy of breast lesions. Orthogonal fusion of

multi-wavelength improved both image reconstruction quality
and accuracy of tumoral and non-tumoral breast lesions’ dis-
crimination. In addition, we show that raw-to-task learning
can improve classification without requiring reconstruction in
a real-time setting making it suitable for real-time throughput,
crucial for medical settings with constrained power budgets.
Our findings suggest that image reconstruction is unnecessary
for unbiased lesion classification. The multi-wavelength fusion
increased accuracy by 9% and 16% on the synthetic dataset and
clinical dataset, respectively, using FuseNet++. Additionally,
direct classification further enhanced accuracy by an additional
3% and 8% on the synthetic dataset and clinical dataset, respec-
tively, using the raw-to-task approach.
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Appendix A
Reconstruction Results Across Clinical Patients
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Fig. 1. Qualitative reconstruction results for all clinical patients with both benign and malignant tumors are presented in this study. In panel A, recon-
struction from a benign case is highlighted. In panel (B-F), the robustness of orthogonal fusion to noise (RFusion) is notable when compared to (R1 to R4)
in the healthy row. This highlights the superior noise resistance of the orthogonal fusion approach. (G,I) Examples of reconstruction failure cases. (G,H)
show some false positive reconstruction cases. However for screening false positives are less critical, as follow-up exam can reveal them, than false negatives
where a tumor is missed. It is worth noting the noisy reconstruction observed in R1 to R4, evidencing a relatively noisy input signal.
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