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Abstract*

Identifying objects in fluorescence microscopy is a non-trivial task burdened by parameter-
sensitive algorithms. With experiments spanning multiple channels, datasets, opera-
tors, and microscopes, there is a clear need for an approach that adapts dynamically to
changing imaging conditions. We introduce an adaptive object detection method that,
given a microscopy image and an image level label, uses a kurtosis based matching of
the distribution of the image differential to express operator intent in terms of recall
or precision. Examples of image level labels include genome-based alteration of sub-
diffraction limited cellular structures or pathological diagnosis based on image-based
analysis of tissue section, where we wish to capture those aspects of the image that
support the label, and to what extent. We show how a theoretical upper bound of
the statistical distance in feature space enables application of belief theory to obtain
statistical support for each detected object. We validate our method on 2 datasets:
identifying Caveolin-1 labelled caveolae and scaffolds acquired by STED superreso-
lution microscopy, and detecting amyloid-β deposits in confocal microscopy retinal
cross sections of neuropathologically confirmed Alzheimer’s disease donor tissue. Our
results show consistency with biological ground truth and with previous subcellular
object classification results, yet adds insight into more nuanced object transition dy-
namics. We illustrate the novel application of belief theory to object detection in
heterogeneous microscopy datasets and the quantification of conflict of evidence in a
joint belief function. By applying our method successfully to confocal and superreso-
lution microscopy, we demonstrate multi-scale applicability.
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I.a Detecting Caveolae in
superresolution microscopy
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Caveolae are structures composed of Cav1 proteins that
enable a cell membrane to withstand stress, and therefore
motility. The formation process of Caveolae is thus a

critical factor in understanding metastasis in cancer cells.
We want to identify in each superresolution image (2D
STED, ∼ 20nm) if a Cav1 concentration is a Caveolae,

background, or scaffold.

I.b Detecting
Alzheimer-disease specific
amyloid-β in confocal

microscopy
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Amyloid-β deposits are associated with Alzheimer
disease, but also are present in healthy tissue. We want to
identify in retina tissue which AB deposits are indicative

of Alzheimer disease, AD+ vs healthy tissue, AD-

II. Self-tuning detection and labelling of objects in multi-scale
microscopy
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Outline of our method [1]. The formation process of Caveolae (A). Genotype alteration allows us to build a 3-valued belief label
(B). The control flow of our algorithm (SPECHT) details the individual steps from self-tuning object detection to belief theory
based labelling (C). The need for self-tuning object detection becomes clear as we contrast the intensity and object diversity in

Cav1 knock-out (D.1.A), PTRF-KO (D.2.A), and the unaltered cells (E). E.Specht shows an example of an annotated (inset) of a
prostate cancer cell. We observe high (expected) colocalization with PTRF for objects labelled as Caveolae, PTRF is necessary for

the formation of Caveolae.

III. Validation

Regression of belief function to  colocalization of PTRF is consistent with ground truth
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Cav1 requires PTRF to form Caveolae. Caveolae in PC3-PTRF cells is reported at a 20% [3]
frequency. Our belief label (X-axis) is consistent with both. Observe how the 20% frequency coincides

with a clear elbow point in the cdf and pdf curves.

Probabilistic labelling of objects in PC3PTRF is consistent across parameter space
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LOESS regression of the belief label (X-axis): colocalization of PTRF with Cav1 is consistent across
cells and coincides with the elbow point of the cdf curve.

IV. Belief theory enables detection across multiple microscopes
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Detecting AB deposits in confocal images is non-trivial, for example contrast image A (Alzheimer positive, AD+) with B (healthy, AD-). SPECHT is able to
identify AB deposits associated with AD+ versus healthy across images from different microscopes.Belief theory enables the seamless joining of models built on
different datasets (D, F) into a single model (E). We are able to inform the end user of deposits where the individual models disagree through the computation of

conflict in Dempster-Shafer calculus [2].

V. Conflict computation between heterogeneous models
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Example of conflict (Y-axis, ∼ disagreement) between individual object labels when SPECHT is
modelled on 2 distinct datasets. A higher Y-value indicates higher disagreement, each marker

represents a single object in an image. The X-axis denotes the belief label. Minimum conflict is highest
where the belief label is around .5.

VI. Conclusion

• We introduce self-tuning object detection coupled with belief theory based object identification
• We show our method works for 2 scientific discovery use cases:

– Caveolae (de)formation associated with metastasis of prostate cancer cells
– Amyloid-β deposits associated with Alzheimer disease in retina tissue

• We show that our method spans heterogeneous data, informing the user of the level of conflict between different datasets.
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