Adversarial Attacks in Medical Imaging

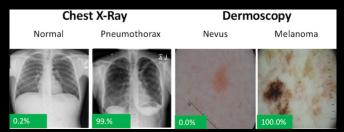
Ben Cardoen

November 21st, 2020

Medical Image Analysis Laboratory, School of Computing Science, Simon Fraser University

This work is licensed under a Creative Commons Attribution NonCommercial ShareAllike (CC BY-NC-SA) license All attributed work retains original copyright and license

Ben Cardoen Outsmarting AI November 21st, 2020


1/12

Al can be

- faster than a doctor (1000s of images / second)
- more accurate than a human, doctor can deal with treating patients
- so good a doctor is no longer needed to verify ¹
- a predictor of new drugs without any real life clinical trials

¹https://www.technologyreview.com/2018/04/11/3052/fda-approves-first-ai-powered-diagnostic-that-doesnt-need-a-doctors-help/

Al can help diagnose patients

An example of state-of-the-art medical imaging Al on X-ray (left) and dermoscopy images (right). The Al prediction shows the confidence that the image is from an unhealthy patient. Images reproduced with permission [1, 3].

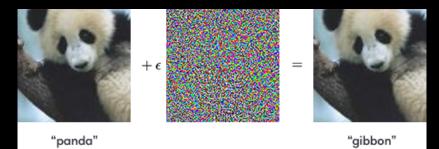
Can we outsmart AI?

Why would someone want to fool medical AI?

- US spends each year more than \sim 3,000,000,000,000 \$ on health care [2]
- Get treatment (drugs) that you do not need
- Deny someone treatment
- Force a (non-working) drug to be approved for use
- Get reimbursed for non-existent disease

But what about the experts?

- Hospital staff is not trained in Computer Science
- Software is rarely updated
- Adversarial attacks are hard to prove

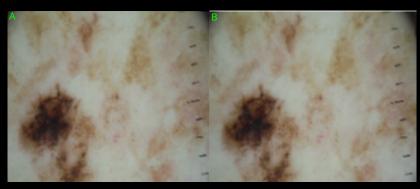

99.3% confidence

5/12

How can you fool AI?

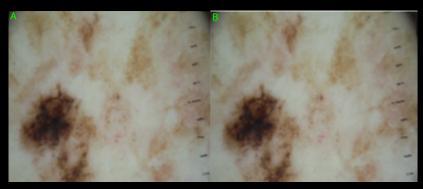
Al can be fooled by

- By learning how to change² the image so a human can't tell the difference
- but the AI is fooled


Adding imperceptible noise to an image can trick AI into misclassifying

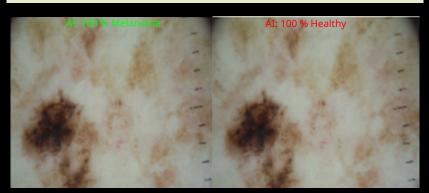
57.7% confidence

²https://github.com/tensorflow/cleverhans


³https://openai.com/blog/adversarial-example-research/

How can you fool medical AI?

Which image was altered?


How can you fool medical AI?

B is altered imperceptibly

How can you fool AI?

Let's ask our AI?

We don't see a difference, yet the AI is completely certain the left (original) image is melanoma (cancer), yet the image (imperceptibly altered) is predicted to be healthy!

How can you fool AI?

Al is fooled

- A doctor would not be fooled
- You cannot see the difference : hard to prove someone altered the image

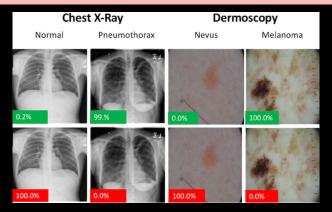


Figure courtesy of Finlayson et al [1]

Can we make AI robust?

Maybe, but...

- Robustness can mean sacrificing accuracy: is that ethical?
- So far no proof that robust and accurate Al is feasible

Can we make AI robust?

Learn More?

- https://adversarial-ml-tutorial.org/introduction/
- https://www.coursera.org/lecture/ai-for-everyone/adversarial-attacks-on-ai-RgA2q
- https://www.youtube.com/watch?v=ClfsB EYsVI

Ben Cardoen Outsmarting AI November 21st, 2020 11/12

References I

- Samuel G. Finlayson, Isaac S. Kohane, and Andrew L. Beam. "Adversarial Attacks Against Medical Deep Learning Systems". In: CoRR abs/1804.05296 (2018). arXiv: 1804.05296. URL: http://arxiv.org/abs/1804.05296.
- Irene Papanicolas, Liana R Woskie, and Ashish K Jha. "Health care spending in the United States and other high-income countries". In: **Jama** 319.10 (2018), pp. 1024–1039.
- Xiaosong Wang et al. "ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases". In: 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2017, pp. 3462–3471.

Ben Cardoen Outsmarting AI November 21st, 2020 12 / 12