
RESEARCH ARTICLE

SPECHT: Self-tuning Plausibility based object

detection Enables quantification of Conflict in

Heterogeneous multi-scale microscopy

Ben CardoenID
1*, Timothy Wong2, Parsa Alan2, Sieun LeeID

3,4, Joanne

Aiko MatsubaraID
3, Ivan Robert Nabi2,5‡*, Ghassan HamarnehID

1‡*

1 Medical Image Analysis Laboratory, School of Computing Science, Simon Fraser University, Burnaby,

British Columbia, Canada, 2 Department of Cellular and Physiological Sciences, Life Sciences Institute,

University of British Columbia, Vancouver, British Columbia, Canada, 3 Department of Ophthalmology and

Visual Sciences, Eye Care Centre, University of British Columbia, Vancouver, British Columbia, Canada,

4 Mental Health & Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United

Kingdom, 5 School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia,

Canada

‡ IRN and GH contributed equally and senior authors to this work

* bcardoen@sfu.ca (BC); irnabi@mail.ubc.ca (IRN); hamarneh@sfu.ca (GH)

Abstract

Identification of small objects in fluorescence microscopy is a non-trivial task burdened by

parameter-sensitive algorithms, for which there is a clear need for an approach that adapts

dynamically to changing imaging conditions. Here, we introduce an adaptive object detec-

tion method that, given a microscopy image and an image level label, uses kurtosis-based

matching of the distribution of the image differential to express operator intent in terms of

recall or precision. We show how a theoretical upper bound of the statistical distance in fea-

ture space enables application of belief theory to obtain statistical support for each detected

object, capturing those aspects of the image that support the label, and to what extent. We

validate our method on 2 datasets: distinguishing sub-diffraction limit caveolae and scaffold

by stimulated emission depletion (STED) super-resolution microscopy; and detecting amy-

loid-β deposits in confocal microscopy retinal cross-sections of neuropathologically con-

firmed Alzheimer’s disease donor tissue. Our results are consistent with biological ground

truth and with previous subcellular object classification results, and add insight into more

nuanced class transition dynamics. We illustrate the novel application of belief theory to

object detection in heterogeneous microscopy datasets and the quantification of conflict of

evidence in a joint belief function. By applying our method successfully to diffraction-limited

confocal imaging of tissue sections and super-resolution microscopy of subcellular struc-

tures, we demonstrate multi-scale applicability.

Introduction

Fluorescence microscopy is a robust experimental tool for the study of biological samples.

Applications range from micrometer-scale labelling of tissues to super-resolution nanometer-
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scale analysis of molecular components of cells [1]. In such experiments, a common goal is to

detect and describe differences between the experimental groups evidenced by the differences

in their images. This problem can be framed as weakly supervised object detection (WSOD), a

challenging task of locating objects in images given only image-level labels. More formally,

given a set of microscopy images {I} from different groups (label L: e.g. normal, control,

treated, infected, mutation, wild type), we want to identify the parts of the image that show evi-

dence for its label L, and quantify the confidence in the identification. In fluorescence micros-

copy studies the challenge is magnified by the heterogeneity in the images from using multiple

samples, diverse fluorescent markers often imaged in parallel in different fluorescent channels,

and various microscopes and operators. There is a clear need for fluorescence image analysis

methods that adapt dynamically to changing imaging conditions.

Unlike the classical WSOD problem statement where an object in nature is either, say, a cat

or horse, objects identified using SPECHT (Self-tuning Plausibility Based Object Detection

Enables Quantification of Conflict in Heterogeneous Multi-scale Microscopy) can assign sup-

port for multiple labels to a single object. To overcome per image variation in acquisition, we

introduce an adaptive approach that detects objects by thresholding the Laplacian of each

image, using its kurtosis to ensure the threshold scales with the distribution of each specific

image. Using belief theory we then assign to each identified object the support or numerical

evidence it has for a set of labels, and introduce how belief calculus can offer the user interpret-

able information on the conflict and agreement of composite models learned on heteroge-

neous datasets. Here, we apply SPECHT to two use cases of distinct scale: identification of

intermediate stages in the construction of more complex subcellular structures using super-

resolution microscopy and detection of a gradual pathology from fluorescent confocal micros-

copy images of tissue sections.

First, caveolae, subcellular structures composed of CAV1 protein complexes, are *100 nm

invaginations in the cell membrane with a varied spectrum of functions [2]. CAV1 forms non-

caveolar scaffolds (SC), including 8S oligomers that combine to form larger non-caveolar

hemispherical scaffolds as well as caveolae [1, 3–6]. In the absence of CAVIN1, CAV1 forms

non-caveolar scaffold structures that contain few CAV1 molecules and those can only be dis-

tinguished from caveolae by super-resolution microscopy [1]. Caveolae flattening functions as

a membrane buffer, protecting cells from membrane breakage in response to mechanical

stress, and scaffolds have been shown to be pro-metastatic in prostate cancer [7, 8]. In fixed

cells, superresolution network analysis identifies individual scaffolds into separate sub-types

whose modular similarity suggests that smaller scaffolds combine to form larger scaffolds and

caveolae [1, 5]. This represents an example of hierarchical modelling in cell biology in which a

larger modular protein structure is composed of smaller sub-units, with both having distinct

functions and properties, e.g. the smaller structure(s) can exist as independent, functional

units [5]. We show that application of SPECHT to an alternate super-resolution microscopy

approach, STED [9], amenable to high speed live cell imaging [10], is capable of distinguishing

these sub-diffraction limited sub-cellular structures.

Second, identification and quantification of amyloid-β (Aβ) deposits in the retina in rela-

tion to Alzheimer disease (AD) is an open research problem [11]. In previous studies using

confocal microscopy on post-mortem donor tissues, retinal Aβ quantification was performed

manually by blinded raters [12] or semi-automatically with manual segmentation [13]. The

resulting measurement of retinal Aβ would be tested for its relationship with age, AD neuropa-

thology, retinal regions, and other measures of interest. As the scarcity of postmortem retinal

tissues from neuropathologically confirmed AD donors often limits the size of such data, vari-

ability from acquisition and manual raters can affect the quantification of retinal Aβ and poses

a challenge to achieving statistical significance.
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Finally, when we present the detected and identified objects to the domain expert, be they

cell biologist or medical practitioner, we want to be able to report how ‘sure’ our method is in

its computation. With biomedical data typically scarce and acquired with differently config-

ured devices, we would like to have a method that can work across these datasets, to maximize

reuse and reproducibility. If models computed on different dataset disagree in the identifica-

tion of objects, we want to report a mathematically grounded quantification of this disagree-

ment or conflict.

Problem statement

We aim to model a function D that identifies subsets of pixels (objects o) of the image and a

function SL that assigns to each object the statistical support, or evidence e, for the image label

L. Statistical support is the numerically quantified evidence distilled by a statistical (learning)

method from feature descriptors and their distribution.

D : I 7! o j o � I: ð1Þ

SL : ðo! LÞ 7! e je 2 ½0; 1�; o � I; L 2 L: ð2Þ

The notation f: A 7! B indicates that the function f has domain A and range B. In the

remainder of this work, we use the notation o! L for the proposition that the object o sup-

ports the label L, and SL = S(o! L) is the function S assigning a continuous (e 2 [0, 1]) support

value to the proposition in the context of belief theory [14], a generalization of probability

functions. In other words, if an object o has high support for image label L, it can be consid-

ered likely or typical to appear in images with label L. A ‘frame of discernment’ Y ¼ fo!
L jo � I; L 2 Lg is the set of all sources of evidence for the image I and label-space L. Labels

can be hierarchically organized; for example the label ‘disease’ can be further specialized into

specific sub-conditions, or sub-labels. An advantage of using belief theory to model this prob-

lem is that it does not require each proposition to be a singleton. Belief theory allows us to

specify only the support we can compute. If we do not have measurable evidence to compute

the support an object has for a specific sub-label, then we do not need to assign it an arbitrary

evidence score, as long as we can assign some evidence to its superset. This enables us to

extend our model as more information becomes available, and lends itself to hierarchical or

nested, and often modular label spaces. A hierarchical or nested label space L is where subsets

of labels have a label. For example the label ‘Disease’ (D) can encompass both ‘Alzheimer’ (A)

and ‘Parkinson’ (P): A;D; P 2 L;D � L;D ¼ fA;Pg. A modular label space is a specific type

of hierarchical label space that models a structure (S), comprised of parts with specific labels

(P1, P2, . . ., Pn), as a subset: S; Pi 2 L; S � L; S ¼ fPij 8i ¼ 1; ::; ng. In our data, caveolae (C),

are constructed by aggregating different types of scaffolds (S): C; S 2 L;C ¼ fSg. With our

use cases featuring nested label spaces, our choice of selecting belief theory as a framework is

justified.

Related work

State-of-the-art methods tackling problems closest to our problem statement are broadly

divided into (i) joint segmentation and classification, (ii) interpretable deep learning, (iii) mul-

tiple instance learning (MIL), and (iv) weakly supervised object detection and localization

(WSOD/L). However, each presents deficiencies with respect to application of the method

across data sets as well as to object classification.
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Joint or hybrid segmentation and classification

In joint or hybrid segmentation and classification learning, higher accuracy can be obtained in

the classification task, while class specific priors can then be leveraged to improve segmenta-

tion [15]. Similar approaches have been applied to chromosome microscopy [16], breast

biopsy [17], fundus images[18], and histopathology [19] to name a few. However, typically

they require object level annotations, which we do not have. In contrast with their object level

classification, we aim to capture a gradual transition between classes, e.g. discrete versus con-

tinuous object level annotations. In addition, they do not always provide a theoretical upper

bound to the support assigned to each segment, meaning that in principle the label assigned to

the object can take on extreme values not warranted by the data. It is unclear how to apply the

same method across heterogeneous datasets, or to quantify conflict between models learned

from such datasets.

Explainable AI

In explainable AI neural networks can, for example, produce the regions of the image that pro-

vide the most decisive information supporting the predicted image level label, are covered in

more detail in recent reviews [20, 21]. Recently, these approaches are accompanied by domain

fusion, for example augmenting MR images of Alzheimer’s patients with their meta-data to

learn the MRI signatures of Alzheimer’s disease [22], or fusing diagnostic reports with image

data [23] to offer interpretable improved diagnosis. While in such approaches the support

each region has for a single label is found, it is not optimized to split those regions into smaller

distinct objects. In addition, there are no non-trivial (0,1) bounds on the support that each

object is assigned, potentially inducing high uncertainty. Filtering the attention maps [24] to

obtain a more precise delineation of which regions of an image support a label is one direction

that aims to close the gap towards granular object detection folded into interpretable AI.

Recent work adds the computation of uncertainty to the ‘importance’ of features in interpret-

able AI [25], however, the output for image features is still region based, rather than object

based.

Multiple instance learning

In MIL terminology, a label exists for a ‘bag’ of instances. The ‘bag’ can refer to the image,

where instances would be objects in the image. The standard MIL model has it that all bags

with label L− only contain instances with label L−. Bags with label L+ contain instances with at

least one instance (‘witness’) with label L+. Alternatively, the MIL formulation can be adapted

to learn the distribution of labels over a bag [26]. MIL has been adopted successfully for

microscopy-specific tasks such as classifying and segmenting cells [27, 28] with recent reviews

[29, 30] detailing the different approaches. We are not aware of MIL methods that incorporate

the explicit encoding of (conflicting) evidence and uncertainty in the context of evidence the-

ory, nor do MIL approaches feature a theoretical bound on the support for each observed

instance.

Weakly supervised object detection and localization

A complete review of WSOD/L methods has been presented recently [31], and is indicative by

the sharp rise in deep learning based WSOD/L approaches. However, subtle yet critical differ-

ences are present between our problem statement and the problem statement addressed in

WSOD/L methods. Uncertainty, in our context, is interpreted as the margin of error in assign-

ing a certain support to an object. In WSOD/L the uncertainty refers to the noise or variability
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induced by the human made image level label annotation [31], domain shift, image noise, vari-

ability in object appearance, or imprecise localization annotations (e.g. size of enclosing

bounding box). In our use case we have no ground truth localizations or bounding boxes to

compare against. Deep learning based WSOD/L methods can be sensitive to small dataset sizes

with long tail distributions, which, unfortunately, is the case for both our datasets and is com-

mon in biomedical data for scientific discovery. We do have the advantage of leveraging acqui-

sition specific information to inform the object detection stage. WSOD/L methods do, to the

best of our knowledge, not quantify or report the evidence based on object features in the end

results, nor do they feature joint models across heterogeneous datasets, which we require.

Interestingly, it has been suggested that such refining of evidence is a key attribute of biological

vision systems [32], and likely to drive adoption towards reinforcement learning based meth-

ods for WSOD/L. Finally, the detection of ‘small’ objects, typically referenced as<16×16 pixels

[33], is still an open problem in deep learning based approaches for WSOD/L [33, 34]. Part of

this difficulty stems from the limited potential for discriminative deep features such small

objects offer. Worse, this problem becomes exponentially harder as object size decreases, in

other words there is an explicit bias towards object size in function of recall, which can com-

promise biological discovery. In natural images, small object detection by remote sensing, for

example by unmanned arial vehicles (UAV), was recently mitigated by exploiting tracking of

registered objects over time [33, 34] in a supervised learning setting. Similarly, exploiting

global information across the image [35] was shown to improve results. However, feature

extraction becomes even more challenging when the source images are no longer natural

images. For instance, single-channel superresolution microscopy, at the limit of physical

observation, often heavily perturbed by both acquisition and semantic noise. In addition, here

WSOD/L is leveraged with the end goal of discovery, without object level ground truth, requir-

ing an unbiased result. In superresolution microscopy adding a temporal dimension invariably

leads to compromising spatial accuracy, making the temporal tracking mitigation not a viable

approach. The problematic ‘small’ category object designation in natural RGB images of

16×16 pixels in our application results in structures of a diameter of 452Â nm2 being desig-

nated as small enough to be problematic in classification, yet the largest structure of interest,

caveolae, have a diameter of 100nm at most [36]. Consequently, this necessitates an approach

that does not rely on deep learning features to work reliably.

The closest related work to ours for the detection of caveolae is Label2Label [37], where a

network is trained in a supervised setting to reconstruct caveolae, however, this approach

learned to ignore, as part of cytosolic background [38], the key components of caveolae: scaf-

folds. Previous work [4] shows that the CAV1 structures in the membrane are compromised

of no less than 4 non-crisp classes of CAV1 structures, with caveolae only accounting for 20%

[1, 5]. Indeed, the difficulty of recovering caveolae and smaller composite structures in STED

was the motivation for the introduction of ‘line-switching 2-color’ for triple-relaxation

(T-Rex) STED [39], which jointly optimizes 2-color acquisition as a remediating step. How-

ever, this still requires adaptive unsupervised object detection to accurately identify the com-

posite nature of the recovered structures. In contrast to the Label2Label approach, we show

that it is possible to identify and differentiate not just caveolae, but also scaffolds in 2D STED,

without requiring improved acquisition. In addition, we show that our usage of belief theory

allows the combination of models constructed on datasets acquired by different operators in

an elegant mathematical framework, including the capture of the uncertainty and conflict

between the interpretable evidence each model has for a weak label.

Finally, we show that the open problem of identification of amyloid-β plaques in fluores-

cence confocal microscopy of retinal tissue conditional on Alzheimer disease features identical

obstacles to CAV1 detection in STED. We show that our method can work on both, without
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specializing on either. In immunohistochemistry, measuring fluorescence signal in confocal

microscopy images has largely relied on manual annotation or traditional image intensity

thresholding techniques such as histogram adaptation or clustering, with ImageJ-based Fiji

being a widely used software for this purpose [40, 41]. The small areas, granular distribution,

unclear signal, noise, and background borders of the fluorescence signal, and the variability in

the image quality, acquisition protocols, and staining and sample quality present inherent chal-

lenges for both approaches, with the latter often employing semi-automated techniques for

annotation quality control [42]. In recent years, several studies have investigated deep-learning

for fluorescence image analysis, focusing mainly on supervised image classification or segmen-

tation of specific cellular or subcellular structures [43–46]. However, manual feature annota-

tion in fluorescence images is well-known to be highly subjective [47, 48]. The variable quality

of annotation, in part caused by low or variable visibility of the fluorescent targets, can result

in the DL model failing to train properly or produce consistent annotations on new data [42,

49, 50]. In this work, we demonstrate how SPECHT identifies fluorescence signal of biological

interest given only the image-level label, and, moreover, robustly performing this task given

two sets of images acquired using different microscopes by different researchers.

Proposed contribution

We introduce here SPECHT for object detection and evidence-based object labelling. SPECHT

involves two stages:

• Adaptive and self-tuning object detection using the kurtosis of the Laplacian to match distri-

butions across channels for fluorescence microscopy.

• Belief theory-based labelling to quantify the non-crisp evidence each identified object has for

a set of image-level labels.

Use of kurtosis enables estimation of algorithm-specific parameters consistently across het-

erogeneous data in the absence of object-level annotation, providing a novel, self-tuning, and

robust framework for analyzing images. The class of problems we address here is identification

of fluorescently labelled structures from background and fuzzy classification of these structures

from each other. The algorithm is illustrated in Fig 1A.

Fig 1. SPECHT algorithm. Adaptive identification of subcellular structures in superresolution microscopy in tandem with belief based labelling of each

object’s support for the cell level genotype. Each image can have a set of labels, SPECHT then computes for each identified object o the support it has

per individual label.

https://doi.org/10.1371/journal.pone.0276726.g001
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We use SPECHT to, first, identify and distinguish sub-diffraction limit (<100 nm diameter)

caveolin-1 (CAV1) domains using STED [9] super-resolution microscopy. Next, we show that

SPECHT can automatically distinguish amyloid-deposits characteristic of Alzheimer disease

in retinal scans. Distinctive retinal amyloid deposits are associated with Alzheimer disease,

however, their identification requires expert analysis [11]. These two use cases demonstrate

the ability of SPECHT to provide adaptive object detection and classification to multi-scale

fluorescent microscopy data sets. The kurtosis scaling and belief theory based object identifica-

tion are not restricted to microscopy use cases, or to the features we use. To the best of our

knowledge we are the first to employ belief theory based object identification for WSOD/L,

enabling the usage of belief calculus for more general applications, as well as leveraging it to

span heterogeneous datasets. By separating the object detection stage from the identification

and labelling, we ensure that our approach will detect objects that have no or weak discrimina-

tive information for an image level label. This capability is important because it enables a more

comprehensive quantitative analysis of images by recording both rare, common, unique, and

distinguishing objects in a variety of images. Learning to distinguish common objects in sets of

images allows our models to learn to identify those in new data where exactly those objects are

altered by disease, dysfunction, or genomic modification. Without decoupling the object

detection stage, we would run the risk of overfitting a learned model only on discriminative

information in the current set of images. The unbiased identification also enables frequency

analysis, where we measure the change in frequency of ‘discriminative’ objects with respect to

‘common’, rather than being bound to counting of discriminitative objects alone.

Method

In this section, we outline the design of our proposed method. To help the reader unfamiliar

with some of the domain specific terms we have 3 glossaries of imaging (S1 Table in S1

Appendix), belief theory (S2 Table in S1 Appendix), and biology (S3 Table in S1 Appendix)

related terms to help understanding of the contribution and ensure terms are unambiguously

defined.

Adaptive kurtosis aligned object detection

Object detection principle. While simple manual thresholding can balance a trade-off

between precision and recall, finding the same consistent balance across images, channels, and

datasets using manual thresholding requires a per-image threshold and is sensitive to operator

variance. The image Laplacianr2, a measure of the second derivative of the image intensity,

can be used to detect edges of objects whereverr2 changes sign. In 2D microscopy images of

3D fluorescent deposits, we can leverage that connected components of V = |min(r2, 0)| (Alg.

1, line 5) coincide with the approximate outline of the objects, since the intensity curve of such

observations is bell-shaped (Fig 2) when the fluorescent marker is labelling complex spherical

structures with a non-constant height.

Non-specific binding can, given its tendency to self-organise [51] in concentrations of fluo-

rescent label, can have a similar intensity profile. More formally, the domain, use case, and

acquisition allow us to state that the intensity profile for a single object can be approximated

by a generalized normal distribution with probability density function b

2aGb� 1 e�
jx� mj
a

b

with scale

α, location μ, the gamma function Γ, and 1� β� 3. We apply a 2-stage Gaussian (Alg. 1-line

4) smoothing before and after V to ensure pixellation effects are minimized, with σ set at or

below the precision of the system. This is related to the Laplacian of Gaussian (LoG) approach,

underlying ‘blob’ detection in, for example, ‘scale-space’ object detection [52]. However, in the
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classical computer vision formulation of ‘blob’ detection, the object representation is assumed

to have a constant or similar representation, not bell-shaped as is the case in our fluorescent

microscopy use cases. The 2nd σ is used to smooth rectilinear effects by the Laplacian operator.

The first can be omitted when the acquisition microscopy has a specialized deconvolution

operator tuned to the imaging point spread function.

Fig 2. Object detection principle. The negative Laplacian (A.3-V, B.1)) can be leveraged to detect Gaussian 2D observations of 3D fluorescent objects.

Thresholding V is a balance between high precision (B.2) and high recall (B.3)

https://doi.org/10.1371/journal.pone.0276726.g002
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Self-tuning adaptive object detection. Given an object detector that gives a higher

response with respect to the location of the object, we need to threshold the response to obtain

a binary mask serving as object detection. To unburden the practitioner and improve repro-

ducibility as well as consistency across images and channels, a self-tuning approach is needed.

The practitioner can be given the option to express their intent in favoring precision or recall

(Fig 3), in terms of object retrieval, and expect to have that intent translated consistently across

heterogeneous datasets into corresponding values in the parameter space of the object detec-

tion method.

In order to express user intent consistently, we have to find a way to translate parameters

across distributions of V-space (negative Laplacian). We observe that an image with a few

bright objects will have a long-tailed distribution in V-space, whereas an image with a high fre-

quency of faint objects will have a short-tailed distribution in V-space (Fig 3 red, green, respec-

tively). The kurtosis of a distribution is a scalar value increasing with the ‘tailed-ness’ of the

distribution. We illustrate this by means of in silico data (Fig 3), where the threshold in kurto-

sis space scales with the shape of the two different distributions (Fig 3C.2-green versus red).

An increase in frequency of objects in an image will lead to higher V values, and with them a

change in the tailed-ness of the distribution. Conversely, a decrease will lead to a shorter tailed

distribution, given that most V values are caused by the image background. If we can find a

thresholding method that adapts to the tailed-ness of the distribution of V, then we are

more likely to obtain consistent across images. We next use these insights to normalize V to

ZV ¼ j
Vi � EðVÞffiffiffiffiffiffiffiffiffi

VarðVÞ
p j 8 Vi and then obtain an estimate E0z � E½Z� (the expected z-score, or ‘standard’

score), as a consistent threshold, that can be scaled up or down automatically across images.

While we can compute E½Z� ¼
R
zf ðzÞdz, this entails that we have a probability density func-

tion, which in practice involves fitting a parametric function, a process that is non-trivial to do

consistently across datasets, and unless corrected, will have a larger error at the tails of the dis-

tribution. Due to inaccurate estimation we can end up with estimates that for one image

underestimate E½Z�, yet for another overestimate. We then have results that vary per image in

precision and recall, rather than being consistent in their results. If we aim for a lower bound

on E½Z� then we maximize consistency. If a preference for precision over recall is preferred,

one can weight the lower bound, while retaining consistency across images. We can derive

such a strict lower bound by noting that kurtosisðVÞ ¼ E½Z4
V �[53]. By a special case of the Cau-

chy-Schwartz inequality, we know that

8xi 2 R
þ
Xn

i¼1

x2

i �

 
Xn

i¼1

xi

!2

� n �
Xn

i¼1

x2

i if n <1 ð3Þ

from which it then follows that
Pn

i¼1

Z4
i � ð

Pn

i¼1

ZiÞ
4
. We can then derive:

ffiffiffiffiffiffiffiffiffiffi
kðXÞ4

p
� EðZÞ: ð4Þ

We now have a lower bound approximation E0z to EðZÞ that allows us to express a threshold

on the normalized Laplacian that scales with the shape of the distribution of the negative sec-

ond derivative of the image, producing consistent results across images, channels and datasets.

We use the ‘excess’ kurtosis (k-3) in our implementation. Moreover, by weighting the kurtosis,

we can allow the user to alter the threshold in a distribution-aligned space. We scale the out-

come by a floating point parameter ‘precision-recall (PRC)’ to fulfill our aim of an intent-

based self-tuning and adaptive method. A value PRC >1 leads to a distribution-aligned object

extraction that favours recall, PRC�1 favours precision. Fig 3 illustrates the scaling effect on
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Fig 3. Adaptive thresholding. Kurtosis based thresholding illustrated on two in silico images. A: N = 35,

s ¼
10þ5�randðÞ

3
, B: N = 12, s ¼

15þ5�randðÞ
1

, sources randomly placed, with isotropic PSF. A.2 and B.2 show the negative

Laplacian, and illustrate how it is less susceptible to intensity differences. C.1: The intensity distribution of both

images. C.2: The distribution of the Laplacian of both images. C.3: The automatically derived threshold based on

kurtosis can be scaled in favor of precision (PRC< 1) or recall (PRC> 1). The plot shows how kurtosis space

thresholding follows the different shapes of the distributions.

https://doi.org/10.1371/journal.pone.0276726.g003
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in silico distributions. However, our results illustrate the need for an auto-tuning approach

where the object detection method retrieves objects consistent with the end-user intent by

aligning the distributions of image differentials.

We note that even though we apply the kurtosis scaling on the negative Laplacian, there are

no constraints to extending this approach to multinomial distributions of arbitrary features, as

long as those have finite moments. Computing kurtosis is non-parametric, e.g. does not expect

a certain family of distribution, hence easily generalizes to new applications.

Finally, we binarize the image where a pixel is 1 if and only if the corresponding negative

laplacian exceeds the dynamic threshold. The binarized image is then decomposed by using

the connected components algorithm treating the 2D image as a graph. The complete algo-

rithm to detect objects from a heterogeneous set of images is listed in Alg. 1.

Algorithm 1 Adaptive kurtosis-based self-tuning object detection
1: Input Set 2D images I, parameter σ1, σ2, precision-recall ratio

(PRC)
2: Output Binary object masks M
3: for Ij 2 I do
4: r2

j  Gaussians1
ðLaplacianðGaussians2

ðIjÞÞ
5: Vj  jminðr

2

j; 0Þj

6: kj  E
Vj � mVj
sVj

� �4

⊳Kurtosis, 4th moment

7: zj  
ffiffiffiffiffi
kj

4
p

⊳Adaptive consistency across channels

8: Vj Vj � mgðV jÞ � sgðV jÞ
zj
PRC

h i
 0 ⊳Eq 4

9: Mj  connectedcomponents(Vj)
10: end for

Probabilistic object labelling using belief functions

The previous section gives us a function D (Eq 1) that decomposes an image I with label L into

objects o. Here we aim to find a function S (Eq 2) that quantifies the evidence for the proposi-

tion o! L for each object.

Computing support for an image level label using belief theory. We model the problem

of finding S for a label L 2 L and image I:

SL : ðo! LÞ 7! ðp; q; rÞ jfo 7! Lg � Y; o � I; p; q; r 2 ½0; 1�: ð5Þ

The triplet (p, q, r) follows the notation of Dempster [54] where p expresses the belief sup-

ported by probabilistic evidence that o supports the label L. q is the belief o does not support

L. r is the uncertainty in measuring the respective beliefs. More formally a belief function on a

set of propositions Θ is a function Bel: 2Θ 7! [0, 1] such that Bel(Θ) = 1, Bel(;) = 0, and

Bel
Sn

i¼1

Ai

� �

�
P

I�f1;::;ng^I 6¼�
ð� 1Þ

jNjþ1BelðAiÞ 8Ai � Y:

Evidence can be encoded by a mass function m(A)![0, 1]|A� Θ, where subsets A are

referred to as ‘focal elements’, such that
P

A�Y
mðAÞ ¼ 1. Probability functions and probabilities

in Bayesian inference are a special case of belief functions where all focal elements are single-

tons. Unlike probability functions, for general belief functions BelðAÞ 6¼ 1 � BelðAÞ. The

‘plausibility’ function is defined as PlðAÞ ¼ 1 � BelðAÞ, and Pl(A)�Bel(A)8A� Θ. In the (p,

q, r) notation, we have that p ¼ BelðAÞ; q ¼ BelðAÞ; r ¼ PlðAÞ � BelðAÞ. The reader can find a

graphical illustration in Fig 4. For a more in-depth review of belief theory, we refer the inter-

ested reader to Yager et al. [55].
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Encoding evidence. Given a set of images J with label LJ, and a set of images I, we want to

identify objects in the images and assign to each object o a tuple (p, q, r) expressing the belief,

plausibility and uncertainty of the proposition o! LJ for objects in images in I. We illustrate

in the results section that our method can be applied to distinguish objects from a nested hier-

archy LJ� LB� LA. In Alg. 2, we illustrate the steps we undertake to arrive at a belief based

labelling of objects in images. The sets of images J and I can originate from different channels.

The adaptive object detection stage ensures consistent results regardless of channel. After

object detection (Alg. 1), we compute a feature descriptor for each object; in our experiments:

Fig 4. Belief theory. Graphical illustration of the concept of plausibility, belief, and uncertainty in the context of belief theory and as used in the

remainder of this manuscript. A.2: Plausibility and belief can be expressed as the complement of their respective support. A trivial, or naive, model has a

plausibility of 1, belief 0, and uncertainty 1. A.3–6: Illustrates the flexibility of belief theory based modelling. Weak, but certain evidence (A.3) occurs

when belief and plausibility are equal, yet small. Conversely strong evidence can be certain (A.5), but does not need to be (A.4). Finally, absence of

quantifiable evidence is mapped to ‘ignorance’, maximal uncertainty, where belief is 0, plausibility1.

https://doi.org/10.1371/journal.pone.0276726.g004
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intensity (sum), area (pixel count) and Laplacian (V, sum), a simple, low-dimensional, with

non-independent features. We next compute the statistical distance of any object o to the dis-

tribution of objects in images J in feature space using the Mahalanobis distance (Alg. 2-line 11)

which accounts for co-dependent dimensions. The Mahalanobis distance range ([0,1)) is not

interpretable as a mass function.

Inferring plausibility. We want to be able to quantify both relative support and support

for an individual label. Since the Mahalanobis distance has a range [0,1), we normalize the

statistical distance (Alg. 2, line-13) so we can leverage Cantelli’s theorem [56]

Pr½Zi � z� �
1

1þ z2
ð6Þ

to assign a theoretical upper limit to the probability that the object in question supports a label,

which then becomes the plausibility qj = Pl(o! LJ)�Bel(o! LJ). From belief theory [54], we

know that BelðAÞ ¼ 1 � PlðAÞ. For o� I we can formulate pi ¼ Belðo! LJ Þ ¼ 1 � qj. When

we swap I and J, we can obtain qi and pj, giving us ri = qi−pi and rj = qj−pj. Fig 8C illustrates the

application of belief theory based labelling on object detection and the interplay between belief

and plausibility (Fig 4A). The resulting support function has no limiting specific priors or

assumptions, is continuous, has a theoretical upper bound, and requires no supervised training

data. When we are interested in relative support, comparing support for L1 versus L2, the sta-

tistical distance can be sufficient without normalization. However, normalization allows us to

compute plausibility and support for individual labels. Fig 4A1–4A6 provides a graphical illus-

tration of the flexibility of the belief theory framework, and can help the reader understand the

definitions of ‘uncertainty’, strong versus weak ‘evidence’, and ‘ignorance’ or absence of

information.

Algorithm 2 Probabilistic labelling algorithm
1: Input Images J with label LJ, Images I
2: Output PlI, plausibility labelled objects for I
3: MI  objectdetect(I, σ1, σ2, PRC) ⊳Alg. 1
4: MJ  objectdetect(J, σ1, σ2, PRC) ⊳Adapts to channel
5: FJ  {features(oji) |oji 2 MJ[j], j 2 [1, |J|]}
6: mJ  EðFJÞ; SJ  CovðFJÞ

7: D  [ ]
8: for Ij 2 I do
9: for ok 2 Mi[j] do
10: xk  features(ok)

11: Dj k½ �  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~xk � ~mJ
� �T

S� 1

J ~xk � ~mJ
� �q

⊳Mahalanobis
12: end for

13: Zj  
Dj � E
ð
DjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðDjÞ

q
⊳Z-normalization

14: for ok 2 Mi[j] do
15: Pl½ok ! LJ�  

1

1þZj ½k�
2 ⊳Eq 6

16: end for
17: end for

Next we apply our method to 2 use cases. First, we show how to apply our method on a hier-

archical problem formulation where we differentiate between 3 nested labels {o 2 LCAV1KO}�

{o 2 LPC3}�{o 2 LPC3−CAVIN1} where a subset label is more specific as illustrated in Fig 8B). We

validate our results with independent biological ground truth and previous art. We offer a

parameter sensitivity study to quantify robustness. Second, we illustrate how to extend our

method across heterogeneous small datasets and compute a joint belief function while quanti-

fying the conflict between the composite belief functions. While belief theory based
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combination has been used for histopathology classification [57], our usage for individual

object detection in microscopy is to the best of our knowledge novel.

Using belief calculus to express joint models spanning heterogeneous data. Especially

in the case of human tissue data of patients, data is sparse and usually acquired by different

institutions, with operators, acquisition, and protocols varying. Using a single sparse dataset

degrades statistical power. Here we show how a practitioner can leverage belief calculus to

compute an interpretable joint model over such datasets. We use Dempster’s combination rule

[58]:

mðAÞ ¼
P

m1ðBÞm2ðCÞjB \ C ¼ A
P

m1ðBÞm2ðCÞjB \ C 6¼ �
; jA � Y: ð7Þ

to define a joint belief function that combines the evidence from both sources to support a

proposition A (o! L), while allowing the expression of the disagreement. Dempster’s rule

uses probability mass functions, which we can obtain from our belief functions by observing

that our propositions (o! L) are singleton focal elements, therefore in our case Bel(A) = m

(A), with mðAÞ ¼
P

B�A
ð� 1Þ

jAnBjBelðBÞ. We enumerate in Table 1 the intermediate results

needed to compute the joint mass function for our use case. Let for a proposition A = (o! L)

the probability mass mH1
ðAÞ ¼ t and mH2

ðAÞ ¼ s respectively. The table is indexed by subsets

of all propositions (Θ) on which the belief functions are defined. An entry in the table on row

B, column C represents mH1
ðB \ CÞ �mH2

ðB \ CÞ. The joint mass function mH0(A) is then

given by:

mH0 ðAÞ ¼
ts

1 � ðð1 � sÞt þ ð1 � tÞsÞÞ
: ð8Þ

Combining sources of evidence should be accompanied by a quantification of their disagree-

ment or conflict to allow a practitioner transparency in the construction and usage of the joint

model. The weight (W) of conflict of the joint mass function, an expression of the disagree-

ment between the two models, is given by the logarithm of the normalisation term W = −log(1

−((1−s)t + (1−t)s))). Combination is not meaningful when both sources are in complete con-

tradiction, that is (t, s) = (0, 1)_(1, 0). In such cases, W is infinite, allowing the practitioner a

sanity check. However, probability values of exactly 0 or 1 are extremely unlikely in practice.

The formulation of a closed form expression for the joint model, allows us to span or ‘fuse’

models across heterogeneous data. Using Dempster’s combination rule to combine models

has been shown to be a robust method to combine multiple heterogeneous object detector

models on natural images (‘Dynamic Belief Fusion’) [59], where it outperformed both Bayes-

ian fusion and weighted sum approaches. In addition, the application was detection of discrete

classes of objects in a supervised setting, e.g. detecting a ‘chair’ in a natural image. More impor-

tantly, the computation and reporting of conflict was not leveraged, as is the application across

heterogeneous datasets. These are important distinctions with respect to applications in

microscopy, where object types are fuzzy or continuous, and heterogeneous data adds further

Table 1. Dempster combination enabling the expression of a joint model. A, B, C�Θ.

B\C! [0, 1] mH1
(A) = t mH1

ðAÞ = 1−t

mH2
(A) = s A! ts ; ! s(1−t)

mH2
ðAÞ = 1−s ; ! (1−s)t A ! ð1 � sÞð1 � tÞ

https://doi.org/10.1371/journal.pone.0276726.t001
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complexity to the fusing of models, as well as necessitating the reporting of conflict to the end

user.

In the following section, we will apply our method to two distinct use cases to illustrate

more advanced usage, in addition to validating the method.

Results

Next, we evaluate SPECHT on in silico, and real world data. The full description of the real

world datasets used in this section is listed in the S1 Appendix (Sec. S5 Text in S1 Appendix).

Each subsection has a detailed breakdown of dataset structure, as this differs per use case. The

use cases share that each is composed of 2D image / label pairs, where each image is a 2D

observation of 3D fluorescent labelling.

Evaluation of object detection on in silico data

Consistency across datasets. In order for the belief labelling stage to function with mini-

mal bias, it is critical that the object detection stage performs consistent, and predictable across

datasets. It is indeed possible to design or train a method to perform optimal on a single cho-

sen dataset, but compromise performance to an unknown extent on future datasets. A major

source of variance across datasets, in fluorescence microscopy, is the distribution in size and

brightness of labelled objects. Variance of fluorescence is not only a common obstacle across

datasets, but also appears in multiple channel analysis, given that two fluorescently marked tar-

gets are rarely exhibiting the same distribution, even in the same cell. We need this consis-

tency, given that we have high variance both across cells and channels, in our real world

datasets. We simulate images of 512 × 512 pixels, with a Gaussian and Poisson noise model

[60] of respectively σ and λ set to 0.062 (in 8-bit grayscale). In each image, k bright and j dim

objects are randomly placed, where k 2[1, 25, 50], and j 2[50, 25, 1]. Bright objects are mod-

elled with a Gaussian PSF (σ = 3), whereas dim objects have σ = 6 and with their intensity

reduced by a factor of 4. For our specific use case, where no ground truth is available and little

domain knowledge can be exploited, we compare against 2 tried and true approaches: auto-

matic scale space detection [52, 61], and Otsu thresholding [62]. More advanced object detec-

tion methods have become available for fluorescence microscopy [63, 64], but these invariably

require parameters related to the objects of interest, e.g. scale range. In our use case we do not

have that information, and estimating it would risk propagating size-based biased information

to the belief based labelling. The scale space algorithm is pre-configured with the range of σ’s

of objects to detect, which in our real data is not available. In addition, the output of the scale

space detection is filtered by an Otsu-filtering stage to remove false positives. SPECHT’s PRC

is set to 2, with σ set to the PSF σ. Fig 5 illustrates the results. Objects are considered correctly

reconstructed when the detected object overlaps with the ground truth (green). False positives

are marked in red, false negatives in blue. Under these varying conditions, SPECHT is not

always optimal (middle row, Otsu), but is very consistent in object retrieval. In contrast, the

two reference methods can be optimal for a given distribution, but vary markedly. If domain

specific information is available, or ground truth data, more targeted object detection stages

can be used in place of our adaptive method. However, reliance on a consistent, adaptive object

detection stage provides the capability to obtain similar results on future unseen datasets, with-

out having to worry about potential parameter sensitive bias.

Robustness to noise. Noise from different sources in unavoidable in fluorescence micros-

copy data. While the Laplacian operator is sensitive to noise, the classical sequence of Gauss-

ian-Laplacian-Gaussian mitigates noise amplification by smoothing. However, at severe noise

levels the smoothing step itself can introduce artifacts, that then lead to false positives or skew
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the Laplacian operator output. By pruning SPECHT’s output with a local maxima heuristic, we

can mitigate introduction of false positives. Recovery of signal that is below background noise

is infeasible. To measure the effectiveness of our algorithm under increasingly noisy condi-

tions, we simulated a mixture of bright and dim light sources (Gaussian PSF), then added both

Gaussian and Poisson noise. In Fig 6 we see that at severe levels of noise (σ = λ = 96/255, or

0.37 in 8 bit grayscale images), SPECHT starts to introduce false negatives and omit faint light

sources. However, note that even at intermediate values (σ = λ = 64/255), recovery of faint

objects is not compromised. Robust object detection is highly relevant to our application,

given that fluorescence labelling can vary across targets, channels, and datasets. In ideal set-

tings, one would preprocess data with specifically developed denoising algorithms, but it is

nonetheless important to measure SPECHT’s sensitivity to low signal-to-noise ratios (SNR).

Robustness and consistency in real STED microscopy images. Recent work [65] showed

that real world variation in the acquisition of fluorescence microsopy can mislead analysis into

concluding that changes at the subcellular level are being recorded, instead of acquisition

Fig 5. Consistency compared to existing methods. We simulate 3 markedly different in silico scenarios where light sources are either dominated by

bright, dim, or are a mixture of both. Note that SPECHT is not always optimal, but does produce consistent results across these variable conditions.

Green marks true positives, the location of the actual objects. Red marks false positives, predicted objects that do not exist. Blue circles denote false

negatives, objects that should be detected, but are not.

https://doi.org/10.1371/journal.pone.0276726.g005
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induced changes. To test SPECHT’s robustness on real STED images to this kind of variation,

we had one expert (TW) annotate 3 ROIs of a PC3-CAVIN1 image, drawing bounding boxes

on CAV1 structures of interest. Annotation was done blinded to object detection results by

SPECHT. We run both the detection and identification stage of SPECHT. The object detection

stage is run in high recall mode (PRC 4.25), to recover any potential object. Next, we use the

identification stage to discriminate between objects with a signature typical of background and

actual CAV1 structures. The results are visualized in Fig 7A and 7B. Detected objects are visu-

alized by their outline, colored by a belief label that scales from background (red) to structure

(green). Here, background refers to cytosolic labelling [38]. To further test the robustness, we

only use 1 PC3-CAVIN1 and 1 CAV1 KO image to construct the model, compared to the

3×30 images in our other experiments. Annotation is done by bounding box using ImageJ

[66]. We then apply noise (Gaussian and Poisson) to the same images, reusing the annotations.

In other words, while SPECHT will see only noisy images, the expert is saved the degradation.

We repeat detection and identification, with results visualized in Fig 7C and 7D. Note how the

addition of noise clearly introduces artifacts when noise exceeds the intensity of faint objects.

The identification stage is equally capable of picking up on this change and labelling these new

false positives as background. The severity of the noise also induces some of the medium size

faint objects to change label towards background, as their intensity no longer is distinguishable

from objects typical in CAV1 KO cells. Note that each object is scored on a belief scale, given

that we are capturing objects whose class labels are not discrete, rather, are expected to fall on

a spectrum of continuous construction and deconstruction dynamics from Caveolae to scaf-

folds and vice versa with intermediate stages present. SPECHT’s intended deployment is to

quantify such dynamics, and thus a discrete classification would induce unacceptable loss of

information. The unknown ground truth, the large number of objects (in the order of 50,000

Fig 6. Sensitivity to noise. SNR decreases rapidly as the parameters of both noise sources (Gaussian, Poisson) are increased, yet SPECHT’s recovery of

faint objects remains stable under moderate noise conditions. At severe noise levels, as is expected, artifacts appear, while sources with intensity lower

than background intensity can no longer be recovered. Green marks true positives, the location of the actual objects. Red marks false positives,

predicted objects that do not exist. Blue circles denote false negatives, objects that should be detected, but are not.

https://doi.org/10.1371/journal.pone.0276726.g006
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Fig 7. Robustness on partially annotated STED images. We illustrate how the belief stage of SPECHT complements the

object detection stage on real world STED microscopy images (A.I-III), subsequently degraded with severe noise (C). We

first run SPECHT in high recall mode on selected ROIs of a PC3-CAVIN1 cell, where an expert makes partial annotation

(B-white box) of structures of interest. The belief stage then uses a single CAV1 KO cell to learn which identified objects

are non-specific labelling (red), versus actual objects of interest (green), on a continuous scale. Next, we repeat the

experiment but severely degrade the image with added Poisson and Gaussian noise. The reduced signal to noise ratio

induces more artifacts, but the belief stage identifies these as non-specific labelling with high plausibility. Scale bar (A.I) =

120nm

https://doi.org/10.1371/journal.pone.0276726.g007
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per image), and the inter-annotator variability limits the utility of user annotation. Neverthe-

less, manual annotation remains valuable baseline to compare against.

Capturing the gradual construction of complex protein structures in STED

CAV1-labelled fluorescent deposits are identified in STED microscopy images and assigned a

belief label describing where the identified concentration is on the spectrum between non-spe-

cific background labelling (BG, Fig 8C), scaffolds (SC), or caveolae (C). BG deposits are fluo-

rescent markers not associated with their biological target CAV1 molecules. BG can be

considered background signal, but is differing from signal perturbing noise. BG fluorescent

marker can have remarkable self-organising properties similar to free floating proteins [51].

Identifying BG allows us to exclude it from our biological targets. We study 3 cell lines: CAV1

CRISPR/Cas KO MDA-MB-231 cells with genetically disabled expression of CAV1, PC3 with

genetically disabled expression of CAVIN1, and PC3-CAVIN1 with CAVIN1 and CAV1

enabled [67]. In CAV1 KO we can only observe BG, in PC3 only SC and BG, in PC3-CAVIN1

the SC, BG and C are present (Fig 8B). Our label space L is then {BG, SC, C}, with subsets

PC3={BG, C} and PC3-CAVIN1 = PC3[{C}.

Experimental procedure. We detect fluorescent deposits (Alg. 1) in CAV1 KO and PC3

cell images and apply the belief function labelling (Alg. 2) to obtain qx = Pl(o! Lx) and

px ¼ Belðo! LxÞ ¼ 1 � qx, where x is BG, PC3 respectively. Next, we process superresolu-

tion images of fluorescence labelled CAV1 deposits in PC3-CAVIN1 (shorthand P3) cells. PC3

cells contain both BG and SC objects, or more formally qPC3 = qSC + qBG, therefore qSC = max

(qPC3−qBG, 0). The max formulation ensures the correct assignment of 0 plausibility, when out-

lier objects have values qPC3 < qBG. The subtraction of plausibility functions represents the

elimination of the maximum support of a subset (BG) from a superset (PC3) to correctly

bracket the maximum support of the subset SC = PC3\BG.

We know that objects unique to PC3-CAVIN1 cells are (formations of) caveolae (C), there-

fore pC ¼ BelðoP3 ! LCÞ ¼ BelðoP3 ! LBGÞ ^ BelðoP3 ! LSCÞ ¼ pBG � pSC. We visualise the

results for a single PC3-CAVIN1 cell in Fig 8C where blue, green, and red gradients corre-

spond with qBG, qSC and pP3, respectively. From visual inspection, we see correlation of

colocalized CAVIN1 with objects labelled with a high pP3 value, as expected (Fig 8C.3.a, d)..

More interestingly, we can now identify objects that are transitioning between SC and C

(Fig 8C.3.c). To confirm this, we next perform extensive validation.

Validation. Given that there is no object-level ground truth available, a direct evaluation

is impossible, nor is there to the best of our knowledge a method that discriminates between

caveolae and scaffolds in 2D STED. Therefore, the only feasible validation is using previous

work on caveolae detection in dSTORM, and colocalization of CAVIN1, essential for forma-

tion of caveolae, two independent sources of information, not leveraged during the design of

the method. First, we know from previous art that the frequency of caveolae in the PC3-CA-

VIN1 cell line has been reported at *20% [5], when compared to other CAV1 structures.

SPECHT computes a belief (pC) for each detected object that it likely is a caveolae. In Fig 9A,

we show the cumulative distribution function (cdf) of that belief function. We observe a trimo-

dal distribution, as expected for each of the 3 labels (C, SC, BG). The label distribution shows

a long left tail, corresponding with 20% of the data, demarcated at the sudden rise of the cdf

(pC *0.32), matching a transition into the 2nd mode of the trimodal distribution. In other

words, if we threshold the belief label at 0.32, the point where the belief function splits into

major and minor part, we find the exact same frequency of caveolae-like objects as previously

reported. Second, we know that caveolae can only form in the presence of CAVIN1. Therefore,

we expect to see an increasing correlation of CAVIN1-CAV1 colocalization as pP3 increases.
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Fig 8. Visualization of results on CAV1 datasets. A: Object detection results on the 3 cell lines with a markedly

different intensity profile. B.1: A Venn diagram illustrating how we differentiate between different genotypes. B.2

SPECHT labelling function assigns each object 3 values representing the belief that the object is evidence for either of

the 3 object types. C: Illustration of the results on a PC3-CAVIN1 cell. C.3-a, c, d are identified as caveolae with high

likelihood, C.3-b as scaffold, C.3-e as background.

https://doi.org/10.1371/journal.pone.0276726.g008
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Fig 9. Results on CAV1 dataset. A: Validation with respect to previous art (A.1) and biological ground truth (A.2). A:

The distribution of SPECHT’s label (A.1, x-axis: P[object] = caveolae) shows a distinct long left tail, containing 20% of

the data. The frequency division matches previous art in dSTORM analysis. Caveolae only form in the presence of

CAVIN1, therefore the probability of an object being Caveolae should correlate with the colocalization of CAVIN1

(A.2), which is what we observe. B.1: The detection threshold (*0.35, A.1–2) matches the sudden rise in colocalization

when we use a LOWESS regression, rather than a linear regression, and results are consistent across 3 replications (30

cells total, each line represents a single cell). B.2: Varying hyperparameters does not alter the consistency of the result

with respect to biological ground truth (colocalization CAVIN1). The dotted line corresponds to the frequency (20%)

of Caveolae detected in dSTORM using network analysis.

https://doi.org/10.1371/journal.pone.0276726.g009
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We compute CAVIN1 colocalization P by measuring the mean CAVIN1 colocalization inten-

sity for each CAV1 object. The regression computes a linear model between pP3 and P for all

objects, for all cells, per replicate (Fig 9B, replicate is a repeat experiment to ensure consis-

tency). CAVIN1 colocalization increases markedly when pP3 increases. In Fig 9B a LOWESS-

regression [68] is computed to discover a more nuanced behavior in the correlation with

CAVIN1 association. All cells show a consistent pattern across replicates. More importantly,

the belief value where the colocalization of CAVIN1 suddenly increases, matches the threshold

found when comparing to previous work (0.32), confirming the belief function is consistent

with biological ground truth and prior work. The SPECHT color legend is overlaid for ease of

interpretation. In conclusion, SPECHT’s label indicating an object is likely to be caveolae is

consistent with the expected frequency of caveolae in PC3-CAVIN1, and the colocalization of

CAVIN1.

Parameter sensitivity study. Our method has 2 parameters: the Gaussian σ (std, Alg. 1)

used in the smoothing and the precision-recall balance. Sigma should be at or below system

precision to avoid creating artificially joined objects. For the CAV1 dataset, we omit the first

Gaussian filter (σ1, Alg. 1), the sigma reported here is σ2. In superresolution microscopy, a

deconvolution operation tuned to the acquisition specific point spread function is more accu-

rate in restoring the signal. PRC is set at the user’s discretion; it is nonetheless important to

document what its exact impact on the result can be. In Fig 9B.2 we compute the results for

replicate 1, Cell 5, the median of the trend (Fig 9B1.1). A lower PRC (1.5) results in fewer,

brighter objects dominating the selection. Fewer spots similar to non-specific CAV1 binding

will be included, explaining the upward shift of the curve while retaining the trend. When

PRC is high (2.5) the inverse process occurs with BG spots driving the mean CAVIN1 associa-

tion lower. A larger sigma (2$ 1) can lead to low intensity borders being included into the

mask of an object. When those pixels are outside the actual caveolae structure the expected

CAVIN1 association is not that of caveolae but of background, reducing the mean CAVIN1

association, resulting in lowered correlation. We conclude that our parameter space does not

invalidate our results with the two independent sources of information. Our method is there-

fore capable of extracting and identifying CAV1 structures in STED superresolution

microscopy.

Identifying retinal amyloid-β deposits associated with Alzheimer disease

We illustrate how we can extend our method for measuring Aβ across three heterogeneous

sparse datasets of fluorescence confocal microscopy images of retinal cross-sections after Aβ-

specific immunohistochemistry, acquired using two different microscopes, each operated by a

different researcher. Rather than counting objects in the image, we use the belief function to

identify which fluorescent marker deposits are more likely to be present in an AD image.

Applying belief functions to identify AD across heterogeneous data. We collected the

following sets of images and labels:

• IH1
, LH: retinal tissue from healthy donors, microscope 1, n = 2

• IH2
, LH: retinal tissue from healthy donors, microscope 2, n = 3

• ID1
, LAD: retinal tissue from AD-confirmed donors, microscope 1, n = 3.

We show an example AD+ image in Fig 10B.1. We identify fluorescent objects in all healthy

images using Alg. 1 and obtain qxLH ¼ Plðo! LHÞ where x indicates which set of healthy

images is used (1,2). Next, for each object detected in each AD image, we obtain as before

pxLH ¼ 1 � qxLH ¼ pxLAD .
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Fig 10. Results on Alzheimer data. A: Belief calculus enables the combination of models learned data originating from different

microscopes. B: We visualize how the joint model operates on a single image of retinal tissue stained for amyloid-β, sourced from an AD+

positive patient. Object marked in red express a high belief in being AD+ specific. C: We offer the end user a per-object expression of the

conflict between the 2 models that create the joint model. An increased weight of conflict (Y-axis) indicates the models disagree on the

labelling for a specific object. We illustrate the visualization here for 3 AD+ images. Observe that for objects where both models are

uncertain (*.5) their minimal conflict is higher than it is for objects that have a higher support for being either AD+ specific or healthy.

https://doi.org/10.1371/journal.pone.0276726.g010
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In Fig 10 we illustrate the idea and visual results as well as the quantification of conflict that

is offered to the end user. The individual belief functions are consistent in their results with

respect to each other and the visually easily observable AB-deposits. The joint belief function

combines both models to offer a weighted combination of the evidence provided by each

model. In Fig 10C we plot the weight of conflict of the joint belief function for all 3 AD images.

The weight of conflict is the smallest at both extrema of the joint belief function, indicating

that the models from the two different microscopes agree the most for the objects that are

strongly believed to originated from a healthy or AD retina by the joint belief function, while

there is a greater disagreement for the objects without strong belief. A practitioner can use the

weight of conflict for each object-prediction pair to quantify the agreement between multiple

sources of evidence along with the output of joint evidence based on the joint belief function.

Discussion

The motivation for this work was the need for a robust, adaptive, and self-tuning unsupervised

probabilistic object detection method applicable to heterogeneous multi-scale superresolution

microscopy. While it is feasible to use a larger number of more elaborate features to describe

objects, e.g. deep learning, during development we found using simple low-dimensional fea-

tures and statistical modelling obtained results validated by biological ground truth. We note

that our formulation of belief functions makes them separable (A\B is a focal element) and

consonant (A� B or B� A) support functions [14]. As a result, our p and q functions are

equivalent to ‘necessity’ and ‘possibility’ functions from possibility theory [69]. We note that

the joint model can also be formulated when objects from 2 different models overlap, for

example, when we run our method with different σ and PRC values to obtain two models,

one with high recall, one with high precision. In such a joint model, we now have for

each object o an inner, smaller object o’. One formulation for focal elements then can be: A =

{(o! L)^(o0 ! L)}, B = {(o! L)^¬(o0 ! L)}, leading to a more complex formulation for a

joint model. A more interesting use case is when the object detection is fuzzy and allows for

non-empty intersections. Due to space constraints we discuss the computation of uncertainty

in S6 Text in S1 Appendix. The belief theory framework allows us to work with nested or hier-

archical labels, as well as leverage the mathematically sound concepts of conflict and joint

models. The object detection stage is designed to be robust to long tail distributions and high

variations in density.

Limitations and future work

When the intensity profile of the fluorescence diverges from a generalised normal distribution,

our object detection will increasingly fail and split objects into parts; a different detection

method is then warranted [70]. In addition, when image quality degrades to low signal to

noise values (SNR), the intensity distribution can cause negative adjusted kurtosis values. In

this case raising such a negative value to a fractional power is a domain error. A deconvolution

or task specific denoising is recommended to recover or improve SNR before analysis, and will

typically be part of an image processing pipeline. The Mahalanobis distance can be uninforma-

tive in high-dimensional space due to the ‘curse’ of dimensionality, however, this is only the

case if the increase in dimensions is due to non-discriminatory features [71]. While the joining

of belief functions by Dempster’s rule is not without criticism [72], we note that the precondi-

tions [72] for its use are satisfied in our case with independent evidence sources and exclusive

exhaustive hypotheses. In future work, we aim to adopt advances in evidence combination

[73] to enable quantification of reliability of individual sources and make the joint model

robust against unreliable sources. We are in the process of extending the approach to
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incorporate temporal information to more accurately capture and reconstruct biological con-

struction dynamics, and identify which temporal dynamics are conditional on weak nested

labels. In addition, the exploration of multiple channels, as well as fusing information from

multiple domains offers more information that can be exploited not only to increase discovery,

but to improve the performance of stages of the method itself. Finally, the usage of the conflict

formulation can be explored with human experts in the loop, to explore its usefulness as an

interpretable tool. We refer the interested reader to S6-S8 Texts in S1 Appendix for a more in-

depth discussion on uncertainty and numerical stability, as well as sensitivity to noise.

Conclusion

We introduced a novel adaptive self-tuning method for object detection in 2D microscopy

images of fluorescent labelled proteins that enables consistent results across channels, and a

novel method to assign each object a belief that expresses numerically the evidence encoded.

We validated our method on superresolution data of CAV1 deposits, where we showed agree-

ment with related work and biological ground truth. We showed we are able to identify and

characterize CAV1-labeled caveolae and scaffolds by STED superresolution microscopy, set-

ting the stage for robust, reproducible temporal live cell analysis where consistency across

images and channels is essential for scientific discovery. We applied our method on an Alzhei-

mer pilot study, illustrating the multiscale applicability. We illustrated with a closed form

expression the capability to formulate a joint model spanning heterogeneous datasets while

recording the conflict of evidence between the separate models as a reliability measure.

Supporting information

S1 Appendix.

(PDF)

Author Contributions

Conceptualization: Ben Cardoen, Ivan Robert Nabi, Ghassan Hamarneh.

Data curation: Timothy Wong, Sieun Lee.

Funding acquisition: Ivan Robert Nabi, Ghassan Hamarneh.

Investigation: Timothy Wong, Sieun Lee, Ivan Robert Nabi.

Methodology: Ben Cardoen, Ghassan Hamarneh.

Project administration: Ivan Robert Nabi, Ghassan Hamarneh.

Resources: Sieun Lee, Joanne Aiko Matsubara, Ivan Robert Nabi, Ghassan Hamarneh.

Software: Ben Cardoen.

Supervision: Joanne Aiko Matsubara, Ivan Robert Nabi, Ghassan Hamarneh.

Validation: Parsa Alan, Joanne Aiko Matsubara, Ivan Robert Nabi, Ghassan Hamarneh.

Visualization: Ben Cardoen.

Writing – original draft: Ben Cardoen, Parsa Alan, Sieun Lee, Ivan Robert Nabi, Ghassan

Hamarneh.

Writing – review & editing: Ben Cardoen, Parsa Alan, Sieun Lee, Joanne Aiko Matsubara,

Ivan Robert Nabi, Ghassan Hamarneh.

PLOS ONE Self-tuning Plausibility based object detection & quantification of Conflict in microscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0276726 December 29, 2022 25 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0276726.s001
https://doi.org/10.1371/journal.pone.0276726


References
1. Khater IM, Meng F, Wong TH, Nabi IR, Hamarneh G. Super resolution network analysis defines the

molecular architecture of Caveolae and Caveolin-1 scaffolds. Scientific Reports. 2018; 8(1):1–15.

https://doi.org/10.1038/s41598-018-27216-4 PMID: 29899348

2. Parton RG, Del Pozo MA. Caveolae as plasma membrane sensors, protectors and organizers. Nature

reviews Molecular cell biology. 2013; 14(2):98–112. https://doi.org/10.1038/nrm3512 PMID: 23340574

3. Monier S, Parton RG, Vogel F, Behlke J, Henske A, Kurzchalia TV. VIP21-caveolin, a membrane pro-

tein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Molecular Biology of the Cell.

1995; 6(7):911–927. https://doi.org/10.1091/mbc.6.7.911 PMID: 7579702

4. Lajoie P, Goetz JG, Dennis JW, Nabi IR. Lattices, rafts, and scaffolds: domain regulation of receptor sig-

naling at the plasma membrane. Journal of Cell Biology. 2009; 185(3):381–385. https://doi.org/10.1083/

jcb.200811059 PMID: 19398762

5. Khater IM, Liu Q, Chou KC, Hamarneh G, Nabi IR. Super-resolution modularity analysis shows polyhe-

dral Caveolin-1 oligomers combine to form scaffolds and Caveolae. Scientific Reports. 2019; 9(1):1–10.

https://doi.org/10.1038/s41598-019-46174-z PMID: 31285524

6. Stoeber Mea. Model for the architecture of Caveolae based on a flexible, net-like assembly of Cavin1

and Caveolin discs. Proceedings of the National Academy of Sciences. 2016; 113(50):E8069–E8078.

https://doi.org/10.1073/pnas.1616838113 PMID: 27834731
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37. Kölln L, Salem O, Valli J, Hansen C, McConnell G. Label2label: Training a neural network to selectively

restore cellular structures in fluorescence microscopy. Journal of Cell Science. 2022; 135. https://doi.

org/10.1242/jcs.258994 PMID: 35022745

38. Wagner C, Singer D, Ueberschär O, Stangner T, Gutsche C, Hoffmann R, et al. Dynamic force spec-

troscopy on the binding of monoclonal antibodies and tau peptides. Soft Matter. 2011; 7(9):4370–4378.

https://doi.org/10.1039/c0sm01414a

39. Ruan H, Yu J, Wu Y, Tang X, Yuan J, Fang X. Fusion of clathrin and caveolae endocytic vesicles

revealed by line-switching dual-color STED microscopy. Journal of Innovative Optical Health Sciences.

2021; 14(06):2150017. https://doi.org/10.1142/S1793545821500176

40. Guirado R, Carceller H, Castillo-Gomez E, Castren E, Nacher J. Automated analysis of images for

molecular quantification in immunohistochemistry. Heliyon. 2018; 4(6):e00669. https://doi.org/10.1016/

j.heliyon.2018.e00669 PMID: 30003163

41. Sezgin M, Sankur B. Survey over image thresholding techniques and quantitative performance evalua-

tion. Journal of Electronic imaging. 2004; 13(1):146–165. https://doi.org/10.1117/1.1631315

PLOS ONE Self-tuning Plausibility based object detection & quantification of Conflict in microscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0276726 December 29, 2022 27 / 29

https://doi.org/10.1148/ryai.2020190043
http://www.ncbi.nlm.nih.gov/pubmed/32510054
https://doi.org/10.1093/brain/awaa137
http://www.ncbi.nlm.nih.gov/pubmed/32357201
https://doi.org/10.1093/bioinformatics/btw252
http://www.ncbi.nlm.nih.gov/pubmed/27307644
https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.1016/j.patcog.2017.10.009
https://doi.org/10.1109/RBME.2017.2651164
https://doi.org/10.1109/RBME.2017.2651164
http://www.ncbi.nlm.nih.gov/pubmed/28092576
https://doi.org/10.1016/j.patcog.2021.107929
https://doi.org/10.1007/s10489-022-03529-w
https://doi.org/10.1096/fasebj.2022.36.S1.0R426
https://doi.org/10.1096/fasebj.2022.36.S1.0R426
https://doi.org/10.1242/jcs.258994
https://doi.org/10.1242/jcs.258994
http://www.ncbi.nlm.nih.gov/pubmed/35022745
https://doi.org/10.1039/c0sm01414a
https://doi.org/10.1142/S1793545821500176
https://doi.org/10.1016/j.heliyon.2018.e00669
https://doi.org/10.1016/j.heliyon.2018.e00669
http://www.ncbi.nlm.nih.gov/pubmed/30003163
https://doi.org/10.1117/1.1631315
https://doi.org/10.1371/journal.pone.0276726


42. von Chamier L, Laine RF, Henriques R. Artificial intelligence for microscopy: what you should know. Bio-

chemical Society Transactions. 2019; 47(4):1029–1040. https://doi.org/10.1042/BST20180391 PMID:

31366471

43. Caicedo JC, Goodman A, Karhohs KW, Cimini BA, Ackerman J, Haghighi M, et al. Nucleus segmenta-

tion across imaging experiments: the 2018 Data Science Bowl. Nature methods. 2019; 16(12):1247–

1253. https://doi.org/10.1038/s41592-019-0612-7 PMID: 31636459

44. Segebarth D, Griebel M, Duerr A, von Collenberg CR, Martin C, Fiedler D, et al. DeepFLaSh, a deep

learning pipeline for segmentation of fluorescent labels in microscopy images. bioRxiv. 2018; p.

473199.

45. Wang F, Wei L. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization

prediction based on immunohistochemistry images. Bioinformatics. 2022; 38(9):2602–2611. https://doi.

org/10.1093/bioinformatics/btac123 PMID: 35212728

46. Nagao Y, Sakamoto M, Chinen T, Okada Y, Takao D. Robust classification of cell cycle phase and bio-

logical feature extraction by image-based deep learning. Molecular biology of the cell. 2020; 31

(13):1346–1354. https://doi.org/10.1091/mbc.E20-03-0187 PMID: 32320349

47. Schmitz C, Korr H, Heinsen H. Design-based counting techniques: the real problems. Trends in neuro-

sciences. 1999; 22(8):345. https://doi.org/10.1016/S0166-2236(99)01418-6 PMID: 10407447

48. Collier DC, Burnett SS, Amin M, Bilton S, Brooks C, Ryan A, et al. Assessment of consistency in con-

touring of normal-tissue anatomic structures. Journal of applied clinical medical physics. 2003; 4(1):17–

24. https://doi.org/10.1120/jacmp.v4i1.2538 PMID: 12540815
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